Vacuum tests for TRISTAN Monispec

Martin Descher, Lars Ullmer, Joachim Wolf
Outgassing test chamber
Mode 1: Pressure increase measurement

- Flush with N2
- Gas inlet and gas throughput valves closed
- Bakeout 100°C
- Cool down and keep stable temperature
- Close main valve and record pressure increase with hot cathode and RGA
Mode 2: Gas throughput measurement

- Flush with N2
- Gas inlet and gas throughput valves closed
- Bakeout 90-100°C
- Cool down and keep stable temperature
- Close main valve and pump via throughput side with known conductance.
Measurement procedure

- 1 week per measurement → sufficient bakeout → repeatability
- Apply 2 methods:
 - Pressure increase measurement
 - Throughput measurement (Data for this at a later time)
- 2 such measurements per probe:
 - Empty measurement → chamber outgassing
 - Probe measurement → chamber + probe

<table>
<thead>
<tr>
<th>Time</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Pump down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probe bunching

- Holding structure
 - Flange with feedthroughs
 - Cooling pipes with copper pieces and swageloks

- Kapton flex cables

- Other Electronics
 - Detector wafer + Cesic + Glue + C-shape flex
 - 2 ASIC boards (mostly unequipped / no SMD parts)
 - Vacuum side feedthrough connectors (Airborne)
 - Flex connectors

- Other parts that were sent to us:
 Hopefully replace for vacuum compatible alternative
 - GFK-Brackets → e.g. stainless steel
 - copper block → OFHC copper)
Vacuum lab schedule: Past and future

<table>
<thead>
<tr>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-30</td>
<td>Gather and clean parts</td>
<td>Short empty meas.</td>
<td>Holding structure reassembly and leak test</td>
</tr>
<tr>
<td>31</td>
<td>chamber assembly, commissioning, holding structure cleaning</td>
<td>Hot bakeout</td>
<td>empty measurement</td>
</tr>
<tr>
<td>1-30</td>
<td>Part cleaning, chamber assembly, commissioning, holding structure cleaning</td>
<td>empty test measurement</td>
<td>HS dissassembly</td>
</tr>
<tr>
<td>31</td>
<td>Aperture calibration</td>
<td>Holding structure cleaning</td>
<td>Pressure gauge calibration</td>
</tr>
<tr>
<td>1-30</td>
<td>chamber assembly</td>
<td>Electronics cleaning</td>
<td>Empty measurement</td>
</tr>
<tr>
<td>1-30</td>
<td>Assemble vacuum baking chamber</td>
<td>Aperture calibration</td>
<td>Empty measurement</td>
</tr>
</tbody>
</table>
Holding structure leak test

- Leak test in outgassing chamber
 - Procedure:
 - Holding structure inserted
 - He leak tester on chamber
 - Spray He from outside
 - Results:
 - Flange and feedthroughs leak tight
 - Leak somewhere along cooling pipe

- Sniffer probe leak test
 - Procedure:
 - Holding structure in air
 - He overpressure in pipe (~3 bar)
 - He sniffer probe from outside
 - Results:
 - Some VCR connections leaky → tried tightening
 - Weldings maybe leak tight, but not completely ruled out

- Continuing:
 - Holding structure disassembled and cleaned
 - Reassemble with new seals → test again
Kapton flex

- 4 kapton flex cables by Polimi, (120 cm² total)
 - Measured separately from other electronics
 (extrapolation to more cables)

- Pressure increase measurements:
 - \(q_{\text{empty}} = 1.7 \cdot 10^{-8} \text{ mbar} \cdot \text{l/s} \)
 - \(q_{\text{probe}} = 1.3 \cdot 10^{-8} \text{ mbar} \cdot \text{l/s} \)
 - compatible with background → upper limit ~ \(10^{-8} \text{ mbar} \cdot \text{l/s} \)

- Throughput measurements:
 - Also ~ \(10^{-8} \text{ mbar} \cdot \text{l/s} \) range
 - Reevaluation with new aperture calibration pending

- Lowest pressure after bakeout:
 - Empty: \(2.1 \cdot 10^{-9} \text{ mbar} \)
 - Probe: \(1.8 \cdot 10^{-9} \text{ mbar} \)

- Total outgassing of Kapton flex negligible

Measurement and analysis by Lars Ullmer
Kapton flex: Residual gas analysis

- RGA spectra of empty and probe measurement also compatible

Measurement and analysis by Lars Ullmer
Electronics (preliminary results) (Measurement from yesterday)

- Probe:
 - Detector wafer + Cesic + Glue + C-shape flex
 - 2 ASIC boards (mostly unequipped / no SMD parts)
 - Vacuum side feedthrough connectors (Airborne)
 - Flex connectors

- Pressure increase measurements:
 - $q_{empty} = 2.6 \cdot 10^{-8} \text{ mbar} \cdot \text{l/s}$
 - $q_{probe} = 1.4 \cdot 10^{-7} \text{ mbar} \cdot \text{l/s}$
 - $\Rightarrow q_{electronics} = 1.14 \cdot 10^{-7} \text{ mbar} \cdot \text{l/s}$

- Lowest pressure after beakout:
 - Empty: $1.4 \cdot 10^{-9} \text{ mbar}$
 - Probe: $1.2 \cdot 10^{-8} \text{ mbar}$

Measurement and analysis by Lars Ullmer
Electronics: Residual gas analysis

residual gas spectrum average over interval [200,300]s (combined from 2 measurements)

Measurement and analysis by Lars Ullmer
Summary

- Measurement of Kapton flex done
 - Sensitivity limit of chamber reached
 - Outgassing small, upper limit $\sim 10^{-8}$ mbar \cdot l/s $\Rightarrow q \sim 10^{-10}$ mbar \cdot l/(s \cdot cm2)
 - RGA spectrum shows no difference to empty measurement

- Measurement of Electronics done
 - Analysis still preliminary
 - Outgassing $q_{electronics} = 1.14 \cdot 10^{-7}$ mbar \cdot l/s
 - Some differences in RGA, but no long hydrocarbons

- Throughput measurements
 - Data in need of pressure gauge cross calibration
 - Will be performed after all measurements are done

- Testing of holding structure ongoing
Backup

Kapton Flex: Pressure increase measurement

Empty measurement

\[q_{\text{empty}} = 1.7 \cdot 10^{-8} \text{ mbar} \cdot \text{l/s} \]

Probe measurement

\[q_{\text{probe}} = 1.3 \cdot 10^{-8} \text{ mbar} \cdot \text{l/s} \]

Analysis/Plots by Lars
Electronics: Pressure increase measurement

Empty measurement

Probe measurement

\[q_{\text{empty}} = 2.6 \cdot 10^{-8} \text{ mbar} \cdot \text{l/s} \]

\[q_{\text{probe}} = 1.4 \cdot 10^{-7} \text{ mbar} \cdot \text{l/s} \]
Cleaning Procedures

- **Kapton Flex:**
 - Cleaned with ethanol and vacuum baked

- **Electronics**
 - **Wafer + Cesic + C-shape flex:**
 - Acetone → Ethanol → Pure water
 - **Other parts:**
 - Electronics dish washer at IPE
 - Pure water
 - **Air bakeout 4h 90°C**