TRISTAN SDD

Sven Jansen, Daniel Klose, Peter Lechner, Danilo Miesner, Gerhard Schaller

MPG-HLL

30.07.2020
CONTENT

- Silicon Drift Detector
- SDD for TRISTAN
- wafer level test
- integrated FET
- alternative readout
- next production
Silicon Drift Detector (SDD)

- **principle**
 - signal charge collection on small readout node by internal static electric field
 - X-ray spectroscopy → electron spectroscopy

- **large area**
 - 5 mm² ... 1 cm² (... wafer scale)
 - monolithic multi-channel option

- **small capacitance**
 - low noise, resolution close to Fano limit
 - high count rates

- **fully depleted and sensitive**
 - efficiency @ high energies (~ 10 keV)

- **backside illuminated, thin entrance window**
 - efficiency @ low energies (~ 100 eV)
 - peak/background ratio

- **integration of 1st amplifying FET**
 - further capacitance reduction
 - robust w.r.t. pickup & microphony
SDD FOR TRISTAN

- multichannel SDD
 - format: 166 (~ 14 x 12) cells
 - hexagonal cells
 - cell size: Ø ≈ 3 mm
 - cell area: A ≈ 7 mm²
 - bond pads placed at two chip edges

- small prototype formats
 - 47 (~ 8 x 6) cells
 - 12 (2 x 6) cells
 - 7 cells
 - single cells

- production volume
 - 6 wafers
 - + 2 wafers (alternative entrance window, stopped)
SDD FOR TRISTAN

- new layout feature
 - "standard" SDD
 - narrow FET
 - TRISTAN SDD

Dimensions are NOT in correct scale

<table>
<thead>
<tr>
<th></th>
<th>standard</th>
<th>narrow</th>
<th>tristan</th>
</tr>
</thead>
<tbody>
<tr>
<td>anode</td>
<td>112</td>
<td>82</td>
<td>112</td>
</tr>
<tr>
<td>gate</td>
<td>96</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>stray</td>
<td>8.4</td>
<td>6.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Σ</td>
<td>216</td>
<td>145</td>
<td>178</td>
</tr>
</tbody>
</table>

Capacitance [pF] simulation/calculation/estimation
Wafer Level Test

- semi-automatic probe station with stepping function & flying probes

- devices
 - all wafers - 4 x 166 cells
 - 2 wafers - 4 x 47 cells - 3 x 12 cells - 4 x 7 cells

- test routine
 - ringX vs. ring1 2x (hemisphere) integrated voltage divider
 - inner guard ring vs. drain 2x (hemisphere) diode stability, shorts
 - reset diode vs. drain 14x (reset group) diode stability, shorts
 - feedback cap vs. drain 166x (cell) insulator integrity, shorts
 - source vs. drain 166x (cell) transistor characteristics Id(Vds), contacts, shorts
 - source vs. bulk 166x (cell) transistor characteristics Id(Vgs), contacts, shorts
 - back contact vs. bulk 1x (global) diode stability, leakage current, depletion voltage
Wafer Level Test

- **entrance window diodes**
 - leakage current level of all formats scaled to 1 cm²
 - 20 ... 70 pA/cm²
 - depending on format
 - edge effect
 - high current @ low voltage
 - guard ring not functional
 - high current @ high voltage
 - ~ full depletion
 - interface current of opposite wafer surface
 - two material groups
 - w01, 02, 03
 \[V_{\text{dep}} \approx 85 \ldots 100 \, \text{V} \]
 - w06, 07, 08
 \[V_{\text{dep}} \approx 100 \ldots 110 \, \text{V} \]
Wafer Level Test

- **Integrated Transistor**
 - Wafer maps of transistor current
 - $I_s [\mu A] @ Vgs = 0 \text{ V}$

- **Strip Pattern**
 - Probably caused by implanter
 - Work-around by quad-mode
Wafer Level Test

- **summary**
 - all large format devices measured completely
 - 22 of 24 devices are defect-free
 - 2 defect hemispheres (inner guard ring diode)
 - small format devices
 - all devices of 2 wafers (8 x 007, 6 x 012, 8 x 047)
 - 22 of 22 devices are defect-free
INTEGRATED FET

- samples of all wafers, comparison with previous
 - saturation current
 \[I_{DSS} = 323 \, \mu A \pm 20 \, \mu A \quad I_{DSS} = 358 \, \mu A \]
 - pinch-off voltage
 \[V_{po} = -2.15 \, V \pm 0.05 \, V \quad V_{po} = -2.1 \, V \]
 - transconductance
 \[g_m = \frac{\partial I_D}{\partial V_{GS}} \, (\text{at} \, I_D = 100 \, \mu A) \]
 \[g_m = 157 \frac{\mu A}{V} \pm 8 \frac{\mu A}{V} \quad g_m = 174 \frac{\mu A}{V} \]
 - ac drain resistance
 \[r_D = \frac{\partial V_{DS}}{\partial I_D} \, (\text{at} \, V_{DS} = 5 \, V) \]
 \[r_D = 72 \, k\Omega \pm 6 \, k\Omega \quad r_D = 70 \, k\Omega \]
 \[g_D = \frac{1}{r_D} \]
 \[g_D = 13.8 \frac{\mu A}{V} \pm 1 \frac{\mu A}{V} \quad g_D = 14.3 \frac{\mu A}{V} \]
INTEGRATED FET

- SIMS measurement of channel implantations
 - comparison w.r.t. old production
ALTERNATIVE READOUT

- use of existing components (SDD 100 mm²)
 - module → Peltier cooled
 → SDD ceramic
 - SDD box → liquid cooling loop
 → low quality vacuum
 → foil window, 55Fe source
 - circuit → compact filter/amplifier board
 → source follower
 → commercial 2nd stage amplifier (AmpTek A250)
 → Gaussian filter
 - setup → chiller
 → individual power supplies
ALTERNATIVE READOUT

- **SDD readout**
 - most reduced & simplest circuit
 - source follower
 - discrete components
 - commercial preamp (AmpTek A250)
 - analog Gaussian filter
 - no pulsed reset, continuous gate discharge
 - no use of feedback cap

- **status**
 - module mounted
 - reanimation of setup next week
Next TRISTAN Production

- 2nd production required
 - number of devices
 - ? layout modifications?
- last launch window: beginning of 2021
- triggered by HLL move to new lab building
 - scheduled date: 1st half of 2022
 - delay conceivable, but not confirmed