Introduction to loop calculations and recent developments (and some future directions)

Federico Buccioni
Physik-Department
Technische Universität München

Ringberg 2024: 2nd Workshop on Tools for High Precision LHC Simulations

protestant
 Catholic ecumenical council on loop business (2024 edition)

Amplitudes and precision phenomenology

$$
\sigma=\sigma_{\mathrm{LO}}+\alpha_{s} \sigma_{\mathrm{NLO}}+\alpha_{s}^{2} \sigma_{\mathrm{NNLO}}+\alpha_{s}^{3} \sigma_{\mathrm{N} 3 \mathrm{LO}}+\ldots
$$ @Fixed order:

- Multi-loop, multi-leg Amplitudes

Not only, loops. Need to include more legs for relevant LHC pheno

- \mathbb{R} Subtraction schemes

From jets cross section point of view:

- In local subtraction schemes, from dijet and above, subtraction is conceptually understood (technically is a different story)
- massive radiators under control
extreme: any XS with NNLO QCD in principle possilbe?
In practice not really true:
automation, efficiency, generalisation/universality. aka: no CS/FKS at NNLO yet

Multiloop scattering amplitudes

Complexity rapidly increases with \#loops and \#scales:
availability of multiscale-multiloop amplitudes are now arguably the bottleneck of NNLO predictions

Current frontier (loops > 1): loops + legs = 7

* Done

Mostly manageable with analytical methods

Multiloop scattering amplitudes

Complexity rapidly increases with \#loops and \#scales:
availability of multiscale-multiloop amplitudes are now arguably the bottleneck of NNLO predictions

Current frontier (loops > 1): loops + legs $=7$

* Done

Mostly manageable with analytical methods
masses (external)

One-loop amplitudes

Nowadays almost nobody talks about one-loop anymore (maybe fair enough)
We certainly do not get much excited about one-loop...it is fully automated anyway!

$$
\mathcal{A}_{N}=:_{j+1}^{1} \sum_{\Omega_{0}}^{N} \int \mathrm{~d}^{D} q \frac{\mathcal{N}^{(\Omega)}(q)}{D_{0}^{(\Omega)} \ldots D_{n-1}^{(\Omega)}}
$$

```
Key components so far of LHC pheno truly indispensable
```

Unitarity-based/On-shell methods

$$
=\sum_{i} d_{i} \mathcal{I}_{4, i}+\sum_{i} c_{i} \mathcal{I}_{3, i}+\sum_{i} b_{i} \mathcal{I}_{2, i}+\sum_{i} a_{i} \mathcal{I}_{1, i}+\mathcal{R}
$$

Started as an analytic program [Bern, Dixon, Kosower]
boost from OPP [Ossola, Papadopolous, Pittau]

Automation in computer codes
shows that at large multiplicity

- Rocket [Giele, Zanderighi 0805.2152] N , algorithm scales as N^{9}
- Black Hat [Berger, Bern, Dixon et al 0803.4180]
- NJet [Badger, Biedermann, Uwer, Yundin 1209.0100]

Pillars of multiloop calculations

Ability to express
the loop integrand

Formulated in very simple terms but very hard to solve (often bottleneck)

Laporta Algorithm + public codes e.g. Reduze, Kira, Lite-Red/Fire (successful for 2 $\rightarrow 2$ @2-loop)

Finite-Fields reconstruction techniques
[Manteuffel, Schabinger 1406.4513, Peraro 1905.08019]

$$
/
$$

+ insight/ideas \sim amplitudes-IBPs interplay and algebraic-geometry inspired
[Gluza, Kajda, Kosower 1009.0472, Ita 1510.05626]

broken the multileg frontier +
$2 \rightarrow 2$ @3-loop and $2 \rightarrow 1$ @4-loop

These are not the only way to evaluate multiloop amplitudes: we'll see alternative ones later

IBPs and algebraic complexity

Relate any integral in a given problem as a linear combination of a limited set of integrals (MIs) \rightarrow via IBP identities
However: huge number of these identities (complexity grows severely with loops and legs/scales) problems of algebraic nature
Moreover: for multiscale problems the rational functions appearing in IBPs can be prohibitively complicated (ratios of huge polynomials)

Questions about:

- Very generally: efficient generation and solution of linear system of identities

[all answers to these questions + details + references in Andrea's and Vasily's talks]
- How to minimise the number of equations still having the same info? Amplitudes-guided principles? Algebraic geometry?
- possible to sidestep manipulating huge symbolic expressions?

IBPs and algebraic complexity

Relate any integral in a given problem as a linear combination of a limited set of integrals (MIs) \rightarrow via IBP identities
However: huge number of these identities (complexity grows severely with loops and legs/scales) problems of algebraic nature
Moreover: for multiscale problems the rational functions appearing in IBPs can be prohibitively complicated (ratios of huge polynomials)

Questions about:

- Very generally: efficient generation and solution of linear system of identities
- How to minimise the number of equations still having the same info? Amplitudes-guided principles? Algebraic geometry?
[all answers to these questions + details + references in Andrea's and Vasily's talks]
- possible to sidestep manipulating huge symbolic expressions?

Even then: for multiscale problems IBPs can stil be horrific (example of massless 5pt amplitudes)

Exploit multivariate/polynomial nature of the problem: partial fraction decomposition Drastic reduction of algebraic complexity. IBPs tractable in a fully symbolic fashion
Examples:

| PB: $\operatorname{INT}[T A, 8,255,8,5,\{1,1,1,1,1,1,1,1,-5,0,0\}]$ | 162 mb | \rightarrow | 3.9 mb |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{HB}: ~ I N T[T B, 8,255,8,5,\{1,1,1,1,1,1,1,1,-4,0,-1\}]$ | 513 mb | \rightarrow | 9.9 mb |

Proposals/approaches for MVPFD: [Pak 111.0868], [Abreu et al, 1904.00945],
[Boehm, Wittmann, Wu, Xu, Zhang, 2008.13194] [Heller, von Manteuffel, 2101.08283]

The largest simplifications for most complicated integrals: factor ~ 100 in reduction size!

New proposals to directly reconstruct in partial-fraction decomposed form
[Chawahry 2312.03672]

Multiloop integrals via differential equations

Take derivatives wrt invariants and solve differential equations, ideal scenario: Differential equations in canonical form, $l_{j}(s)$ a vector of UT integrals

$$
\mathrm{d} I_{i}(\vec{s})=\epsilon \mathrm{d} A_{i j}(\vec{s}) I_{j}(\vec{s}) \quad \mathrm{d} A_{i j}(\vec{s})=\sum_{n=1} a_{i j}^{n} \mathrm{~d} \log \left(W_{n}\right)
$$

 alphabet
algebraic functions of the invariants:
Provided boundary conditions are known
rat. functions + square roots

Often fixed required analyticity conditions or compute/evaluate integrals in a specific limit point

Differential equations can be solved systematically: HPLs, GPLs, Iterated integrals
ideal for symbolic manipulations and numerical implementation
fast numerical evaluation, also in "arbitrarily" high numerical accuracy

Typical issues:

- finding a well-suited canonical basis can be very hard

$$
\begin{aligned}
& I(\vec{s})=\mathrm{P} \exp \left[\epsilon \int^{\vec{s}} A(\vec{x}) \mathrm{d} \vec{x}\right] I\left(\vec{s}_{0}\right) \\
& I^{(\omega)}(\vec{s})=\int_{\gamma} \mathrm{d} \log W_{i_{1}} \ldots \mathrm{~d} \log W_{i_{n}} \\
& \omega \text { integrations }
\end{aligned}
$$

- write a solution general enough in any kinematic region
- fixing boundary conditions tricky at times/technical challenges

> Scenario not always like this (we'll see later)

(selection of) Recent results from multiloop-multileg in QCD

Scattering amplitudes: 2 $\rightarrow 2$ @ 3-loops in massless QCD

All 3-loop $2 \rightarrow 2$ amplitudes with external massless partons are now available
Master Integrals [Henn, Mistlberger, Wasser '20] + calculation of the amplitudes [Bargiela, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21,'22]

Scattering amplitudes: 2 $\rightarrow 2$ @ 3-loops in massless QCD

All 3-loop $2 \rightarrow 2$ amplitudes with external massless partons are now available
Master Integrals [Henn, Mistlberger, Wasser '20] + calculation of the amplitudes [Bargiela, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21,'22]

Basis of functions:

canonical form "algorithmically" + dLog integrand [Henn et al 2002.09492] HPLs up to transcendental weight 6

Reduction to Mls:
FinRed [von Manteuffel]: syzygy + finite-fields reconstruction

Signal-background interference in Higgs-mediated diphoton production [Bargiela, FB, Caola, Devoto, von Manteuffel, Tancredi '23]

Destructive interference effects $\sim 1.8 \%$ reduction of signal $X S$

H/V+jet @3-loops

Arguably one of the most important class of processes: a resonant colour singlet recoiling against a hard jet three-loop QCD corrections V+ jet and H+ jet

First results: planar (LC) contribution to $2+$ jet amplitude
[Gehrmann, Jakubčík, Mella, Syrrakos, Tancredi 2307.15405]

First results: planar (LC) contribution to $2+$ jet amplitude
Canonical bases not a bottleneck (still non-trivial) solutions in terms of 2d-HPLs [Gehrmann, Remiddi hep-ph/9912329]

IBP reduction manageable with public code (Kira)
Higgs?
$Z(H)$ decaying to three jets
crucial for QCD studies at future lepton colliders

Going beyond planar sectors (Higgs at LC and beyond)

- find a candidate canonical basis is very hard
- alphabet richer and more complicated great progress towards non-planar LC Mls in $\mathrm{H}+\mathrm{j}$ [C. Mella talk at Loops\&Legs 2024]
- IBP reduction of amplitudes to Mls not feasible with standard public codes

needs experimenting and good ideas!

Scattering amplitudes: $2 \rightarrow 3$ massless QCD

All $2 \rightarrow 3$ massless amplitudes available in full colour (massless QCD)
Big boost from availability \& fast evaluation of "Pentagon Functions" [Chicherin, Sotnikov '20] + new methods to cope with algebraic complexity
three photons

Phenomelogical predictions for all particles signatures

Interesting observations/studies from full colour QCD results

Dipole
$2 L$ one-gluon soft-current.
Tripole only present at SLC
in >4 - jets amplitudes.
Responsible for
breaking of collinear-factorisation
[Dixon, Hermann, Yan, Zhu 1912.09370]

Challenges for the (near) future:

any of these amplitudes with a jet: RVV @ N $N^{3} L O$
controlling two-loop amplitudes in unresolved regions: high-numerical stability required
quadruple precision? Rather expansions NkLP

Scattering amplitudes: 5 pt with one external mass

Great progress on one-mass 5pt scattering amplitudes

Impressive progress on 5pt with one mass amplitudes

$$
w+b b / j y
$$

$$
H+b b
$$

Boosters:

computation of all relevant functions (one-mass pentagon functions)
application of finite-fields reconstruction methods for IBPs (Caravel, FiniteFlow)

Recently: complete set of all one-mass PF (planar+non-planar)
[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 2306.15431]

Such progress will also be crucial for FCC-ee studies

- $e^{-} e^{+} \rightarrow 4$ jets @ NNLO QCD

1 -mass 5 pt in decay kinematics $2 \rightarrow q q b g g / 4 q$

- $e^{-} e^{+} \rightarrow 3$ jets @ N^{3} LO QCD

VVR contribution
numerical/technical challenges will arise in unresolved kinematic regions true in general, also for LHC applications

Scattering amplitudes: more masses

Starting to see preliminary results for $2 \rightarrow 3$ with external two and more external masses
VVj and friends: see talk by Samuel

Hassociated production

Hj
completed evaluation of MIs contributing to Leading Colour ttj amplitude
[Badger, Becchetti, Giraudo, 2oia 2404.12325]
for most integral families, deqs admit a dLog form representation presence of elliptic sectors \rightarrow non-logarithmic differential forms

solution via generalized series expansion (Froebenius method)

$\mathrm{HH} / \mathrm{HtW}$

two-loop Mls for ttH production with a Light-Quark Loop [F. Febres Cordero, G. Figueiredo, M. Kraus, B. Page, L. Reina 2312.08131]

two-loop Mls for ttH production with a Light-Quark Loop
solution via canonical deqs

Two-loop amplitudes for HH production, the Nf -part
[Bakul Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson 2402.03301]

Mls computed numerically: pySecDec

(selection of)
 Recent results from multiloop QCDxEW and NNLO-EW

QCD: a very sociable theory

Transfer of knowledge from various subfields of high-energy (precision) physics


```
21-23 Feb 2024
ETH Zurich
UTC timezone
```

The focus of the workshop is on computational techniques (mostly analytical, but possibly numerical) for cosmological large-scale structure. We anticipate lively discussions on how to leverage some of the expertis from the QCD, amplitudes, and related communities for computing observables (especially higher n-point functions and higher loops) in LSS.

QCD: a very sociable theory

Transfer of knowledge from various subfields of high-energy (precision) physics

Galaxies meet QCD

```
21-23 Feb 2024
ETH Zurich
UTC timezone
```

The focus of the workshop is on computational techniques (mostly analytical, but possibly numerical) for cosmological large-scale structure. We anticipate lively discussions on how to leverage some of the expertis from the QCD, amplitudes, and related communities for computing observables (especially higher n-point functions and higher loops) in LSS.

Mixed QCDxEW corrections

Natural and most well motivated starting point: Drell-Yan

Analytical approach: [Heller, von Manteuffel, Schabinger, Spiesberger 1907.00491,2012.05918]
Result in terms of GPLs \rightarrow fit polylog ansatz via symbol calculus.
Fast and flexible evaluation $0.8 \mathrm{~s} / \mathrm{psp}$. Needs care for thresholds
Semi-numerical approach [Armadillo, Bonciani, Devoto, Rana, Vicini 2201.01754,2405.00612]
Compute Mls via series expansions + grid for MC evaluation
QCDxEW amplititudes for CCDY (fresh off the press)

V+jet

[Bargiela, Caola, Chawdhry, Liu 2312.14145]

$I^{+} I^{-}$recoiling against a hard jet

Dominant contribution
from resonant 2 boson

non-rationalizable squared roots

Interesting observation:

Electroweak physics at the Z-pole: NNLO EW

EW corrections are essential for precision measurements at lepton colliders: perturbative approach

Delicate relation EWPOs \leftrightarrow measured quantities: absolute control on theory
\checkmark complete 2-loop EW corrections to 2 ff form-factor + detailed study of impact on EWPOs [Dubovyk, Freitas, Gluza, Riemann, Usovitsch 1906.08815]

From the technical point of view: 2-loop integrals using numerical techniques (mostly sector-decomposition and Mellin-Barnes)

X 3-loop EW and QCDxEW form factors needed for target precision

Numerical approaches seem the most solid route right now
Nowadays: underlying mathematical structure emerging: high potential

Theory input required for full line-shape description

NNLO-EW corrections in Drell-Yan (LHC and FCC)

Take care

consistent renormalization in presence of unstable particles, aka. complex-mass scheme @NNLO-EW careful and detailed study

Higgs physics at FCC-ee and NNLO EW

Measurement of 2 H cross-section with expected precision of 0.4%
NNLO electroweak corrections of commensurate size (although calculations are monstruos)

Numerical approaches to Higher-order EW corrections to 2 H

Complete two-loop amplitudes calculation a' la AMFlow: [Chen et al 2209.14953]
NNLO EW with nf-enhanced contributions [Freitas, Song 2209.07612]

Impact at cross section level for $s \sim(240 \mathrm{GeV})^{2}$ increase NLO-EW prediction by 0.7%

Bosonic contributions could be significantly harder

$$
\text { Dreaming big (and crazy): H in VBF : e-e+ } \rightarrow \text { HVV }
$$

Two-loop electroweak corrections to 5-point amplitude with one off-shell leg
possibly beyond current technology:

(some recent, and not so recent...) Methods

Numerical loop integration

Integrate over energy component of loop momentum \rightarrow Loop-Tree duality inspired methods Integrate the rest via Monte Carlo ~ like a phase-space integration

Idea: consider the whole amplitude as a "loop MC" integrand

Potential scope for generalisation/automation

Loop integrand is singular: UV and \mathbb{R}

UV is easy (local UV counterterm)

IR local counterterm way more involved
locally finite 2-loop amplitudes
proof of concept application to EW gauge production in 99 and 99
[Anastasiou, Sterman 2212.12162]
[Anastasiou, Karlen,Sterman, Venkata 2403.13712]

Threshold singularities of loop integrand (can be very nasty)

local subtraction of thresholds [Kermanschah 2110.06869, Capatti 2211.09653]

threshold singularities of a pentagon

Evaluation of MIs via generalised series expansion

tipycal situation:
non-necessary or unavailability to cast deqs in canonical form connection matrix A "too complicated" or equations are coupled

$$
\mathrm{d} I_{i}(\vec{x}, \epsilon)=A_{i j}(\vec{x}, \epsilon) I_{j}(\vec{s}, \epsilon)
$$

Ansatz for a general solution around a (non)-regular point

$$
f(x) \sim a_{n m} x^{n} \log (x)^{m}
$$

once an initial condition is known, trasport solution to new disc of convergence: cuts \& poles in the complex plane

(selection of) Examples:

Application to elliptic sectors in $\mathrm{H}+\mathrm{j}$ production with full top/bottom mass dependence
[Moriello 1907.13234]
[Bonciani, Del Duca, Frellesvig, Hidding, Hirschi, Moriello, Salvatori, Somogyi, Tramontano 2206.10490]
diphoton at NNLO QCD with fullo top-mass dependence
[Becchetti, Bonciani, Cieri, Coro, Ripani 2308.11412]

Application of Frobenius method to solve differential equations high potential for algorithmic implementation

DiffExp

[Hidding 2006.05510]
well-established and highly optimized

Seasyde
[Armadillo, Bonciani, Devoto, Rana, Vicini 2205.03345]

transporting differential equation in the complex plane
ideal for (N)NLOEW corrections with complex masses (resonances)
application to mixed QCDxEW corrections
not really usable point-by-point (pheno application) need to rely on grid implementation

Auxiliary mass flow

Key idea behind: introduce an auxiliary imaginary mass η and fix the boundary condtion at " $\eta \sim-\mid * \infty$ " [Liu, Ma, Wang 1711.09572, Liu, Ma 2107.01864]

$$
I(\vec{\nu}, \vec{s}, \epsilon)=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}+\mathrm{i} 0^{+}\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}+\mathrm{i} 0^{+}\right)^{\nu_{K}}} \quad I_{\mathrm{aux}}(\vec{\nu}, \vec{s}, \epsilon, \eta)=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}-\eta\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}-\eta\right)^{\nu_{K}}}
$$

Physical result recovered as:

$$
I(\vec{\nu}, \vec{s}, \epsilon)=\lim _{\eta \rightarrow \mathrm{i}^{-}} I_{\mathrm{aux}}(\vec{\nu}, \vec{s}, \epsilon, \eta)
$$

Calculation of the auxiliary integral via:

$$
\frac{\partial}{\partial \eta} \overrightarrow{\mathcal{I}}_{\mathrm{aux}}(\vec{s}, \epsilon, \eta)=A(\epsilon, \eta) \overrightarrow{\mathcal{I}}_{\mathrm{aux}}(\vec{s}, \epsilon, \eta)
$$

Boundary conditions trivialize at $\eta \sim-\mid \star \infty$

massive vacuum integrals

Solution of the deq via series expansion in η

Successive steps to transport solution and expansion around regular points

Dictated by poles/cuts structure in $\operatorname{Re}[\eta]$ and radii of convergence in η

Impressive results and extremely handy tool
$t t$ in $e^{-} e^{+}$: total rate at $N^{3} \mathrm{LO}$ (above threshold)

can deliver a value for an integral in a specif point with arbitrarily many digits
more and more often used to fix $B C$ for other general series solvers

Also able to deal with phase-space integrals and linear propagators
[Chen et al 2209.14259] ${ }^{s^{1 /[/[G e n)}}$

Elliptic amplitudes

Cases where deqs are doubly coupled or the maximal cut

$$
\operatorname{MaxCut}\left(I_{1,1,1,0,0}\right) \sim \int \frac{\mathrm{d} z_{4}}{\sqrt{P_{4}\left(z_{4}\right)}}
$$

$P_{4}\left(z_{4}\right)=\left(z_{4}-a_{1}\right)\left(z_{4}-a_{2}\right)\left(z_{4}-a_{3}\right)\left(z_{4}-a_{4}\right)$
$a_{1}=\left(m_{2}-m_{3}\right)^{2}, a_{2}=\left(m_{2}+m_{3}\right)^{2}, a_{3}=\left(m_{1}-\sqrt{p^{2}}\right)^{2}, a_{4}=\left(m_{1}+\sqrt{p^{2}}\right)^{2}$
First issue: canonical differential equation beyond MPLs cases? New approaches and ideas

$$
a_{1}=\left(m_{2}-m_{3}\right)^{2}, a_{2}=\left(m_{2}+m_{3}\right)^{2}, a_{3}=\left(m_{1}-\sqrt{p^{2}}\right)^{2}, a_{4}=\left(m_{1}+\sqrt{p^{2}}\right)^{-}
$$

[Pögel, Wang, Weinzierl 2211.04292] [Görges, Nega, Tancredi, Wagner 2305.14090]
$\rightarrow \mathrm{GM}_{m n}^{\epsilon}(\vec{x}) \sim \omega(\vec{x})$

$$
\mathrm{d} I_{i}(x, \epsilon)=\mathrm{GM}_{i j}(\vec{x}, \epsilon) I_{j}(\vec{x}, \epsilon) \longrightarrow \mathrm{d} J_{m}(x, \epsilon)=\epsilon \mathrm{GM}_{m n}^{\epsilon}(\vec{x}) J_{n}(\vec{x}, \epsilon)
$$

examples of 3 -equal mass sunrise, $x=\left(s, m^{2}\right)$

$$
\omega(\vec{x}) \sim \mathrm{K}\left(k^{2}\right)=\int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}
$$

NNLO QED correction to Bhabha, Møller scattering:

First complete analytic results for a scattering amplitude with elliptic integrals
[Delto, Duhr, Tancredi, Zhu 2211.04292]

start from ep-factorized deq to systematically obtain a small mass-expansion (generalised series)
coefficients are HPLs

(couple words on) Approximations
 (that we can hear about in this workshop)

(non-)leading colour and (non-)planar diagrams

Consider a $U(N)$ gauge theory (also $S U(N)$ is fine), in the t'Hooft limit $N \rightarrow \infty$ at $\lambda=92 * N$ fixed [t'Hooft'73]

$$
\text { diagram } \sim \lambda^{\text {loops }} N^{X}
$$

sphere $X=2$

Tipically: planar topologies much easier to handle with
To give an idea: IBP identity for the single worst planar integral in 5-pt massless scattering $\sim 50 \mathrm{mb}$

Sometimes: planar != LC

moreover, Hgg is an effective coupling result: higher numerator rank than full QCD amplitudes algebraic complexity significantly increases
otherwise $X=2$ - holes

at Leading power in N
the diagram is planar (topologically)

Non-planar: more complicated functions/cuts and algebraic complexity much worse
To give an idea: IBP identity for the single worst
non-planar integral in 5-pt massless scattering $\sim 3 \mathrm{gb}$ of an IBP reducer

Parametrically: LC, i.e. N^{2} not justified
In QCD, the expansion parameter: N_{f} / N_{c} (once leading N_{c} factored out)

Masses, when they matter

Most often perturbative QCD calculations performed including only massless fermionic contributions or, in HEFT (infinite top-mass limit)

Justified when such contributions are suppressed by the large mass $\sim\left(1 / m_{t}\right)^{p}$

Cases where the presence of internal masses does matter, typical example EW corrections, Higgs Y coupling to internal masses + large pT, etc

Presence of internal masses makes everything significantly more complicated, even for low multiplicity

22 production in 99 fusion

[Agarwal, Jones, von Manteuffel 2011.15113]
[Agarwal, Jones, Kerner, von Manteuffel 2105.04436]

 $1 /$ mt effects and top-bottom interference in $99 \rightarrow H$
[Czakon, Harlander, Klappert, Niggetiedt 2105.04436]
[Czakon, Eschment, Niggetiedt, Poncelet, Schellenberger 2312.09896]

crucial in addressing one of the leading theory uncertainties on the gluon-fusion cross section

Summary and outlook

- Great progress on loop and more generally amplitudes calculation
- General advancements and deeper understanding of algebraic/transcendendatal properties of amplitudes
- Broken the $2 \rightarrow 3$ phenomenology barrier:
fully differential predictions for classes of processes (massless particles + one mass + ttX)
for some processes non-availability of loop amplitudes current bottleneck
- Where/when new results become available, ideally "fully exact" results should be included where possible
lift approximations (be them justified/process dependent) when relevant: masses, LC vs SLC
- Analytic method may not be suited with massive contributions ~ NNLO-EW and mixed QCDxEW
- Great parallel progress on understanding geometry of amplitudes beyond MPLs (elliptics and beyond)

- If amplitudes not available:
estimates/approximation only possibility (well motivated approximations)
More refined calculation will shed light.
More generally: when complete results are avalaible understanding leading contributions important for the future

