Recent developments in multiscale loop scattering amplitudes

Vasily Sotnikov

University of Zurich

Ringberg 2024:
2nd Workshop on Tools for High Precision LHC Simulations, Castle Ringberg, Kreuth (Germany)
$10^{\text {th }}$ May 2024

Universität Zürich ${ }^{\text {Vh }}$

General motivation

Success of the LHC physics program relies on precise theoretical understanding of the Standard Model.
[talks by Federico and Fabrizio].

Fixed order partonic cross sections

Collinear factorization:

$$
\begin{aligned}
& d \sigma_{h_{1} h_{2} \rightarrow X}\left(p_{1}, p_{2}\right)=\sum_{i, j} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i}\left(x_{1}, \mu\right) f_{j}\left(x_{2}, \mu\right) \underbrace{\text { "Hard" partonic cross section }}_{\text {Series truncation uncertainty }} \begin{array}{r}
\text { d } \hat{\sigma}_{i j \rightarrow X}\left(x_{1} p_{1}, x_{2} p_{2}, \mu\right) \\
\mathrm{d} \hat{\sigma}_{0}\left(1+\Lambda_{\mathrm{QCD}} / Q\right) \\
\left.\sigma^{(1,0)}+\alpha_{s}^{2} \sigma^{(2,0)}+\alpha \sigma^{(0,1)}+\alpha_{s}^{3} \sigma^{(3,0)}+\alpha \alpha_{s} \sigma^{(1,1)}+\ldots\right) \\
\alpha_{s}\left(M_{Z}\right) \sim 0.1 \\
\alpha\left(M_{Z}\right) \sim 0.01
\end{array}
\end{aligned}
$$

At least NNLO QCD and NLO EW corrections must be included to achieve percent level theory uncertainties (\oplus PDFs, parton showers, resummations).

This talk: recent advances in multi-scale NNLO QCD corrections.

NNLO QCD multiplicity frontier

Ultimate goal:

fully differential NNLO cross sections for all (interesting) SM processes

One-loop stable in IR,

$$
\text { NNLO QCD } 2 \rightarrow 3 \quad \sigma_{\mathrm{NNLO}}^{F+X}=\sigma_{\mathrm{NLO}}^{F+X}+
$$

current frontier

- Main missing ingredient, no automation in sight
- Both technical and conceptual challenges
- Doing it efficiently is hard
- General purpose public codes still missing

Two-loop multi-scale amplitudes: state of the art

Loops \& legs: state of the art

Two-loop five-point amplitudes: massless

Complete since the end of last year

	Comment	Complete analytic results	Public code	Cross sections
$p p \rightarrow \gamma \gamma \gamma$	I.c. *	$[4,5]$	$[4]$	$[11,12]$
$p p \rightarrow \gamma \gamma j$	I.c.	$[2,3]$	$[2]$	$[10]$
$p p \rightarrow j j j$	I.c.	$[1]$	$[1]$	$[8,9]$
$p p \rightarrow \gamma \gamma \gamma$		$[14]$	$[14]$	
$p p \rightarrow \gamma \gamma j$		$[6]$		
$g g \rightarrow \gamma \gamma g$	NLO loop induced	$[7]$	$[7]$	$[13]$
$p p \rightarrow \gamma j j$		$[15]$		$[15]$
$p p \rightarrow j j j$		$[16,17,18]$	$[17]$	
$p p \rightarrow t \bar{t} H$	$m_{t}, m_{H} \rightarrow 0$ limit	$[19]$		

[1]	[Abreu, Febres Cordero, Ita, Page, VS '21]
$[2]$	[Agarwal, Buccioni, von Manteuffel, Tancredi '21]
$[3]$	[Chawdry, Czakon, Mitov, Poncelet '21]
$[4]$	[Abreu, Page, Pascual, VS '20]
$[5]$	[Chawdry, Czakon, Mitov, Poncelet '20]
$[6]$	[Agarwal, Buccioni, von Manteuffel, Tancredi '21]

[7]	[Badger, Brønnum-Hansen, Chicherin, Gehrmann,	[13]	[Badger, Gehrmann, Marcoli, Moodie '21]
	Hartanto, Henn, Marcoli, Moodie, Peraro, Zoia '21]	[14]	[Abreu, de Laurentis, Ita, Klinkert, Page, VS '23]
$[8]$	[Czakon, Mitov, Poncelet '21]	[15]	[Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]
$[9]$	[Chen, Gehrmann, Glover, Huss, Marcoli '21]	[16]	[de Laurentis, Ita, Klinkert, VS '23]
$[10]$	[Chawdry, Czakon, Mitov, Poncelet '21]	[17]	[de Laurentis, Ita, VS '23]
$[11]$	[Chawdry, Czakon, Mitov, Poncelet '19]	[18]	[Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi '23]
$[12]$	[Kallweit, VS, Wiesemann '20]	[19]	[Wang, Xia, Yang, Ye '24]

Evaluation of Feynman integrals: pentagon functions [Chicherin, Vs '20]

Application in α_{s} measurement

Determination of the strong coupling constant from transverse energy-energy correlations in multijet events at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector

ATLAS Collaboration • Georges Aad (Marseille, CPPM) Show All(2916) (see also [Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet '23])
Jan 23, 2023

- Remarkable agreement between NNLO and data
- α_{s} measured at record scales
- Milestone for pQCD tool development

STRIPPER

[Czakon '11] [Czakon, Heymes '14]
Two-loop corrections
[Abreu, Febres Cordero, Ita, Page, VS '21]
[Chicherin, VS '20]

To be published in PDG 2024 review [arXiv:2312.14015]

Two-loop five-point amplitudes: one external mass

		Comment	Complete analytic results	Public code		Cross sections
	$p p \rightarrow W b \bar{b} \quad$ I.c.*	I.c. ${ }^{\star}$, on-shell W	[1]			
	$p p \rightarrow W(l \nu) b \bar{b} \quad$ I.c.	I.c., $m_{b}=0$	[2, 3]	[10]		[3, 4, 7]
	$p p \rightarrow W(l \nu) t \bar{t} \quad$ I.c.	I.c., $m_{t}=0$	[2, 3]	[10]		[8]
	$p p \rightarrow Z(l l) b \bar{b} \quad$ I.c.	I.c. ${ }^{\star}, m_{b}=0$	[2]	[10]		[9]
	$p p \rightarrow W(l \nu) j j$	I.c.	[2]	[10]		
	$p p \rightarrow Z(l \bar{l}) j j$	I.c.*	[2]	[10]		
	$p p \rightarrow W(l \nu) \gamma j$	I.c.*	[5]			
	$p p \rightarrow H b \bar{b} \quad$ I.c.	I.c., $m_{b}=0$	[6]			[Christian's talk]
[Badger, Hartanto, Zoia '21] [Abreu, Febres Cordero, Ita, Klinkert, Page, VS '21] [Hartanto, Poncelet, Popescu, Zoia '22] [Hartanto, Poncelet, Popescu, Zoia '22]						iesemann '24] Page, VS in preparation]
	Evaluation of Feynman integrals: pentagon functions [Chicherin, VS, Zoia '21] [Abreu, Chicherin, Ita, Page, VS, Tschernow, Zoia '23]					

Two-loop five-point amplitudes: beyond one external mass

Comment \quad| Complete |
| :---: |
| analytic results |\quad Public code Cross sections

[Image by DALL-E]

Two-loop five-point scattering: first results with masses in loops

No complete amplitudes or integral families known

Integrals

- Analytic study of integral families for $p p \rightarrow t \bar{t} j$ (I.c.) [Badger, Becchetti, Chaubey, Marzucca '23] [Badger, Becchetti, Giraudo, Zoia '24]
- Analytic study of integrals for $p p \rightarrow t \bar{t} H$ contribution with a light quark loop in I.c. [Febres Cordero, Figueiredo, Kraus, Page, Reina '23]
- Numerical evaluation on a few points possible with AMFlow approach [Liu, Ma '21,'22]

Amplitudes

- Numerical evaluation of light and heavy quark loop contributions to $q \bar{q} \rightarrow t \bar{t} H$ [Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson '24]

Warning: two-lop "mass-in-the-loop" frontier

(1) With massive particles in loops analytic (mathematical) complexity may escalate abruptly and dramatically!

Underlying reason: integrals associated with nontrivial algebraic curves and surfaces (e.g. elliptic curves)

Example: $p p \rightarrow t \bar{t}$
\checkmark analytic results for $q \bar{q} \rightarrow t \bar{t}$ with top loops [Mandal, Mastrolia, Ronca, Bobadilla '22], evaluation "easy"
© analytic results for $g \bar{g} \rightarrow t \bar{t}$ with top loops [Adams, Chaubey, Weinzierl '17,'18] [Badger, Chaubey, Hartanto, Marzucca '21], but unclear how to evaluate efficiently due to the presence of elliptic curves

But

- Cross sections computed with numerical methods and interpolation grids since long time ago [Czakon '08] [Bärnreuther, Czakon, Fiedler '13]
- Recent example: NLO corrections for $g g \rightarrow Z Z$ [Agarwal, Jones, Kerner, von Manteuffel '24]

Not discussed in this talk \longrightarrow [Andreas's talk]

Dynamic and fixed scales

Dynamic scales

- Mandelstam invariants $s_{i j}$, off-shell legs p_{i}^{2}

Fixed scales

- Particle (complex) masses, e.g. m_{t}, m_{W}
- Mathematical complexity can escalate very quickly
- With few dynamic scales can profit the most from numerical methods \oplus interpolation grids

In the following I mainly highlight dealing with many dynamic scales.

Analytic methods: selected highlights

Analytic multi-loop amplitude calculations

What is a "good" transcendental functions basis?

Analytic properties

- No hidden identities (basis)
- Analytic cancellation of UV and IR divergences (minimize regularization artifacts)
- Control over physics properties (amplitudeology friendly)
- Compact rational coefficients

Numerical evaluation

- Over whole physical phase space
- Fast (Monte-Carlo integration over large phase space)
- Stable

Analytic methods: selected highlights

Feynman integrals

Pure integrals and canonical differential equations

Pure integrals and canonical differential equations

Pure Feynman integrals
[Henn '13]

Canonical DE very challenging to obtain for multi-scale integrals

Cutting edge examples:

\# scales	$\#$ massive lines	Reference
6	0	[Abreu, Chicherin, Ita, Page, VS, Tschernow, Zoia '23]
7	0	[Jiang, Liu, Xu, Lin Yang '24] [Samuel's talk] 8
6	0	[Henn, Peraro, Xu, Zhang '21] [Henn, Matijašić, Miczajka, Peraro, Xu, Zhang '24]
[Badger, Becchetti, Chaubey, Marzucca '22]		
7	≤ 2	[Badger, Becchetti, Giraudo, Zoia '24]
7	≤ 2	[Febres Cordero, Figueiredo, Kraus, Page, Reina '23] \longleftrightarrow beyond d log forms!

How to solve DE?

How to solve DE?

Pure Feynman integrals

Canonical DE

$\mathrm{d} \vec{g}=\epsilon A \vec{g}$
$A=\sum_{i} \mathrm{~d} \log W_{i}(\mathbf{s}) A_{i}$

Map may not exist [Duhr, Brown '20]

Sometimes still possible

[Heller, von Manteuffel, Schabinger '19] [Heller '21]
[Bonetti, Panzer, Smirnov, Tancredi '20]
[Kreer, Weinzierl '21][Duhr, Smirnov, Tancredi '21]
[Papadopoulos, Tommasini, Wever '15] [Papadopoulos '14]
[Canko, Papadopoulos, Syrrakos '20]
1.
but "good" representation
even more challenging

How to solve DE?

Pentagon functions construction

Example: one-mass pentagon functions

- Compelte basis of two-loop transcendental functions for NNLO corrections for $V j j, H j j$, etc.
- Timing to evaluate all 1291 functions on one CPU

The only viable method for $2 \rightarrow 3$ phenomenology so far!

- Excellent numerical performance

Case study: importance of transcendental function basis

Consider triphoton hadroproduction in NNLO QCD (I.c.)
[Chawdry, Czakon, Mitov, Poncelet '19]
using earlier incarnation of (planar) pentagon functions [Gehrmann, Henn, Lo Presti '18]

- Rationalized kinematics required due to precision loss
- Average time 17 minutes to typically get 2 digits
- Need interpolation grids (very challenging for many dynamic scales)

Case study: importance of transcendental function basis

Consider triphoton hadroproduction in NNLO QCD (I.c.)
[Chawdry, Czakon, Mitov, Poncelet '19]
using earlier incarnation of (planar) pentagon functions [Gehrmann, Henn, Lo Presti '18]

- Rationalized kinematics required due to precision loss
- Average time 17 minutes to typically get 2 digits
- Need interpolation grids (very challenging for many dynamic scales)
[Abreu, Page, Pascual, VS '20]
using "good" function basis [Chicherin, VS '20]
- Double precision sufficient
- 1 second to typically get 11 digits
- Same efficiency for full color !
[Abreu, de Laurentis, Ita, Klinkert, Page, VS '23]

Analytic methods: selected highlights

Rational coefficients

Rational coefficients

Analytics from (exact) numerics

Main lesson

Rational coefficients $r_{\overrightarrow{\mathrm{i}}}$ simple (given a good $g^{\overrightarrow{\mathrm{i}}}$ function basis).

- Bypass intermediate expression swell by exact numerical evaluations over \mathbb{F}_{p} : $p<$ machine integer \Longrightarrow efficient
- Reconstruct analytic expressions from numeric samples [von Manteuffel, Schabinger '14] [Peraro '16]
- Important bonus: enables parallelization

Analytics from (exact) numerics

Main lesson

Rational coefficients $r_{\overrightarrow{\mathrm{i}}}$ simple (given a good $g^{\overrightarrow{\mathrm{i}}}$ function basis).

- Bypass intermediate expression swell by exact numerical evaluations over \mathbb{F}_{p} : $p<$ machine integer \Longrightarrow efficient
- Reconstruct analytic expressions from numeric samples [von Manteuffel, Schabinger '14] [Peraro '16]
- Important bonus: enables parallelization

Most powerful when applied to physical quantities (reconstruct finite remainders)
[Abreu, Dormans, Febres Cordero,
FiniteFlow
Ita, Kraus, Page, Pascual, Ruf, VS '20]
[Peraro '19]

Less powerful, but also useful for IBP reduction only (reconstruct integral reduction rules)

LiteRed+FiniteFlow,	numerous private codes
Kira+FireFly, FIRE6	(e.g. Finred by A. von Manteuffel)

Remarks on integration-by-parts reduction

- Problem conceptually solved by Laporta's algorithm
- In practice, IBP equation systems remain major bottleneck in loop calculations
- No major breakthroughs, but process specific optimizations make the difference

Multiscale problems @ 2 loops

- Situation majorly improved by (exact) numerical frameworks
- Solving systems over \mathbb{F}_{p} (setting s, ϵ to integers) typically straightforward
- Eventually number of samples for reconstruction becomes the issue

General observation

Avoiding generating identities that introduce auxiliary integrals (e.g. higher denominator powers [Gluza, Kadja, Kosower '11]) typically helpful.

Public proof-of-principle implementation: NeatIBP [Wu, Boehm, Ma, Xu, Zhang '23].

Note: lots of experimentation and ideas in the literature not discussed here! [Andreas's talk]

Analytics from numerics workflow

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19]
[Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]
[Bendle, Böhm, Heymann, Ma, Rahn, Ristau, et al. '21]

Multivariate partial fractioning

Analytics from numerics workflow

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19]
[Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]
[Bendle, Böhm, Heymann, Ma, Rahn, Ristau, et al. '21]

Multivariate partial fractioning

A. Large number of samples

Analytics from numerics workflow

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19]
[Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]
[Bendle, Böhm, Heymann, Ma, Rahn, Ristau, et al. '21]

Analytics from numerics workflow

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19]
[Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]

Rational basis change

r_{i} generally has spurious denominators, which amplitudes not allowed to have

- exponent too high, e.g. $1 / s_{23}^{3}$
- unphysical pole, e.g. $1 /\left(s_{12}-s_{14}\right)$

Idea: find transformations $Q_{i j}$ to maximally cancel spurious denominators

- Can be done before full analytic reconstruction \Rightarrow reduced number of samples
- Positive impact on numerical stability expected

Rational basis change examples

Example 1

Three-jet production (full color) [de Laurentis, Ita, Klinkert, VS '23].
(see also [Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi '23]).
Numerical samples generated by Caravel.

- Reduction from 250 k to 15 k samples (reconstruct the latter)
- Rational basis (after additional massaging) printed in the paper, 4 pages

Example 2

Analytic results for Vjj production from [Abreu, Febres Cordero, Ita, Klinkert, Page, VS '21]

- Reconstructed analytic form that is hard to use (large numerical cancellations, large memory footprint)
- Multivariate partial fractioning fails due to complicated Gröbner basis
- With basis change $1.2 \mathrm{~Gb} \rightarrow 25 \mathrm{Mb}$ [de Laurentis, Ita, Page, VS to appear]

Numerical methods

Mixed analytic-numerical

Light and heavy quark loop contributions to $q \bar{q} \rightarrow t \bar{t} H$
[Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson '24]
(see also similar approach to $W j j$ production [Hartanto, Badger, Brønnum-Hansen, Peraro '19])

Amplitude reduction

- Numerical with rationalized kinematics, highly optimized systems of IBP equations.
- Impressive performance: 2 minutes on one CPU.

Evaluation of integrals

- Basis optimized for sector decomposition (quasi-finite integrals [Andreas's talk]).
- Large numerical cancellations handled by Quasi-Monte-Carlo sampling (pySecDec).
- 5 minutes on a modern GPU.

Questions

- Scaling to more complex integrands (complete amplitudes)?
- Do high-dimensional interpolation grids work?
- Two-loop corrections expected small [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22] \longrightarrow how many evaluations to validate approximations?

Fully numerical: IR finite integrands

Idea

- Universal IR structure of color-singlet production \Longrightarrow locally finite integrands (before loop integration).
$q \bar{q} \rightarrow F$ [Anastasiou, Sterman, Venkata '22]
$g g \rightarrow F$ [Anastasiou, Karlen, Sterman, Venkata '24]
- Simultaneous Monte-Carlo integration over loops and phase-space.
- No IBP reduction, no dedicated computations of Feynman integrals.
- E.g. applicable to $p p \rightarrow V V V$, which is challenging with current analytic methods.
- Proof-of-principle computation: closed-quark contributions for $q \bar{q} \rightarrow \gamma \gamma \gamma$ [Matilde Vicini's talk @ Loops\&Legs 2024]

Questions

- Scaling to more complex integrands (complete amplitudes)?
- Minkowski (or threshold) singularities?
- Easy to adapt standard cross section frameworks?

Conclusions \& Outlook

Feynman integrals: analytic vs numerical

Analytic

\checkmark Map to MPLs for $2 \rightarrow 2$, when possible.
\checkmark For $2 \rightarrow 3$ "pentagon functions" method, when possible.
© Biggest issue: general class of functions not understood, even mathematically. Pentagon functions beyond d logs?

(Semi-)numerical

Solving DEs by matching local series expansions, or numerical Monte-Carlo integration of optimized bases.
\checkmark Successfully sidestep analytic complexity with few dynamic scales.
\checkmark Less sensitive to analytic complexity, masses may actually help in practice.
x No function basis \Longrightarrow analytic rational coefficients hard, large numerical cancellations
\triangle Too slow for many dynamic scales?

Conclusions \& Outlook

NNLO revolution

- Steady progress for $2 \rightarrow 3$ processes:
all massless complete, first result with external masses.
- Significant progress due to paradigm shift from symbolic computations to analytic reconstruction.
- Good grasp on analytic structure of Feynman integrals and associated function spaces has been essential.
- Multi-scale loop amplitudes remain major bottleneck, case by case computations.

Conclusions \& Outlook

NNLO revolution

- Steady progress for $2 \rightarrow 3$ processes:
all massless complete, first result with external masses.
- Significant progress due to paradigm shift from symbolic computations to analytic reconstruction.
- Good grasp on analytic structure of Feynman integrals and associated function spaces has been essential.
- Multi-scale loop amplitudes remain major bottleneck, case by case computations.

Outlook

- 5-point with massless loops (e.g. $H j j, V V j, V V V$): feasible based on current methods.
- N^{3} LO applications more challenging, potentially better analytic control will be needed.
- Massive loops, few dynamic scales: feasible with (semi-)numerical methods.
- Massive loops, many dynamic scales (e.g. $t \bar{t} j, t \bar{t} H, t \bar{t} W$): requires major breakthroughs.
- Beyond 5-point: currently unimaginable (any relevant processes?).

Acknowledgments

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement 101019620 (ERC Advanced Grant TOPUP).

