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Goal, Focus and Slogans

aoal: compute Eey o e their amalviice structure. W*

Maln goal: compute Feynman mtegrals to make their analytic structure
4' transparent and SO that we can evaluate them in a stable and efficient way
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Focus. PIanar Feynman mtegrals for processes W|th f|ve external partlcles
4‘ two of them massive, and with massless propagators
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+ This should be easy and boring! o )

p1

v Everything that can be made massless was made massless

v Describing processes with 3 particles in the final state at 2nd order in perturbation theory

v Functions that appear are the ones we've been saying we understand well for a long time!

v Five-point one-mass @ 2 loops was not that easy...

v ... but we have better tools and it actually was simple for five-point two-mass @ 2 loops!

v First explorations in [2401.07632, Jiang, Liu, Xu, Yang, 24]



Precision! 4

+ Pe rcent- Ievel p reCISIO N [See Fabrizio’s, Federico’s, Vasily’s, Andreas’ talks]
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+ Amplitudes for NNLO corrections (five-point processes)

UNDER GOOD -

CONTROL
+ Factorisation of work: amplitudes and phase-space integration
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ONNLO = T ORvy T

NB: Divergences appear, work in

Dimensional Regularisation,
D=4—->D=4-"2¢




Amplitudes and Feynman Integrals 5

Master mtegrals
klnematlc dependent

1. Feynman integrals as vector spaces

v Integration-by-parts (IBP) relations and master integrals

2. How to compute (multi-scale) Feynman integrals? } Enough for formal studies,

: : : : eg. N = 4sM
v Differential equations and pure basis :

Non-trivial, required for
pheno studies

3. How to (efficiently) evaluate Feynman integrals? }

v Numerical methods and pentagon functions



Feynman Integrals as Vector Spaces: IBP relations 6

[Tkachov; Chetyrkin, Tkachov, 81]
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| » Linear relations of integrals with different v;

+ IBP relations can generate integrals with new propagators
v Afamily/topology contains enough propagators for this not to happen

+ Integrals in a family related by IBP relations, rational in scales and D

v Reduce integrals to a set of master integrals

+ The number of master integrals is always finite

v Computed from critical points, Euler characteristics, ...
v Finite number of integrals needed to solve a family

+ Each family defines a (finite dimensional) vector space

v Like for any vector space, some bases are better than others



Feynman Integrals as Vector Spaces

Example 1: five-point one-mass scattering at two loops ; Planar VS Non-Planar

v Depend on 6 variables

3 2 4
4 3 5\
v Penta-boxes: , 2 , 1 , 3
9 / 9 / 2 ¢
[2005.04195] A, L 5 ‘ {2
74 75 86

v Hexa-boxes:

[2107.14180]

v Double pentagons:

[2306.15431]



Feynman Integrals as Vector Spaces

Example 2: five-point two-mass scattering ; one VS two loops

v Depend on 7 variables
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[2401.07632, Jiang, Liu, Xu, Yang, 24]



Feynman Integrals as Vector Spaces: Summary

+ All about solving IBP relations

v IBP relations are easy to write, but hard to solve

v Several approaches: Laporta’s algorithm (most successful approach),
intersection theory, recurrence relations, ...

+ Implemented in several public codes

v Kira, FIRE, NeatIBP, FiniteFlow, Reduze, LiteRed ...

-+ Bottleneck in many applications ’.
| v Only use analytics when it cannot be avoided

!(
U v Bypass large analytic expressions with numerical evaluations (in finite fields) |

e e ]
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Computing Feynman Integrals: Differential Equations 10

+ Goal: evaluate integrals around D = 4 dimensions (as expansion in ¢)

+ Many ways to compute Feynman integrals

v Analytic/numerical integration of parametric representation

v Transform into differential eq uation problem [Kotikov, 91; Bern et al, 94; Remiddi, 97; Gehrmann, Remiddi 00]

+ Let 7 be a set of master integrals ; it is closed under differentiation

o j(x e)— A (xe)j(x e) |

i

v Derivatives change powers of propagators = reduce to masters with IBPs
v IBPs are rational inxand D =4 —2e¢ = A _(x, €) has rational entries

v For generic .7, not clear we gain a lot... but some bases are better than others!

Example: one-loop bubble with one massive propagator, ¥ = {I(1,1),1(1,0)}

(D =3)m?—p)  (D=2)m?—pd) )

— /(=120 o oo | —
0pe 7 = - i (p2=miy 77

O m? (_1(2,0)> 0 D-2
\ 2m? )




Computing Feynman Integrals: Pure Bases 1

+ If possible (11), find new basis 7 (x, €) such that e

CAQ) = ZA,.dlog?. i‘

|

v A; are matrices of rational numbers, all x dependence in W,
v only has logarithmic singularities, explicit in the differential equation
v organises ¢ dependence, easier to solve order by order

v solution trivial to write in terms of iterated integrals, order by orderin ¢

+ All analytic information made manifest
v W, give logarithmic singularities/branch cuts: symbol alphabet

v A, tell us how singularities interact: (extended) Steinmann relations, ...

Example: Pure basis for one-loop bubble with one massive propagator (u = pz/mlz)

7N -2 0 B 1 -1 —
_O_ duj(u,e)—€[<0 O>d|og(1 u)+<0 O>d|ogu] L (u;¢€)



Computing Feynman Integrals Pure Bases

+ No general algorithm to find a pure basis (automated codes exist, with limitations)
v leading singularities
v cuts/on-shell differential equations
v ideas from /4 = 4 sYM

+ Leading singularities: this is where square roots appear!

v Determine A; without computing the integral
\/ Az v Compute as residue of integrand

b1
DPs

+ 44 square roots for 2-loop 5-pt 2mass (10 for 2-loop 5-pt 1m)!

P2 + D3

v 3-point Gram A;, degree 2: 7 permutations P

v 5-point Gram As, degree 4: 1 permutation

v 4-point 3-mass root, degree 4: 18 permutations - Ps -
v New degree 4 root: 6 permutations < -

v New degree 4 root: 12 permutations Ps

b1 D2

12

Ds

b1



Computing Feynman Integrals: The New Roots 13

1 1
[ 1 1 ~ = ~
= a6\ g il‘ b <‘ VA
) =2 AD(?/ﬂl) ~
P 1 L
= |d?l &>
} 772 DiD,D;s QL) — Q3(£) %&r 1 1

st — Q703 /_AIZI

1 1
= | d¢t :
*D\D,D5 \/AL(Zy) SZ v Need to work a bit harder
1 1 to compute root...
= |47 2 2 @
) DDy st(?y) — Qi(£1)ps

+ Side comment: one of the integrals comes with two roots!

D1
Ps

P4
D3



Computing Feynman Integrals Alphahets and Letters 14

+ Getting diff. eq. relies on IBPs: dn‘ﬁcult to do analytlcally

+ If the W, are known, determine the A, from numerical IBPs!

v removes the IBP bottleneck, allows to attack multi-scale problems

+ The W, give singularities of Feynman integrals = Landau conditions

v Factorisation of work: determine W, without computing the differential equation!

v Active area of research in Amplitudes area: coactions, solving Landau conditions, principal
A-determinants, Gram determinants, Schubert problem, ...

v Two highlights: [2311.14669, Fevola, Mizera, Telen], [2401.07632, Jiang, Liu, Xu, Yang, 24]

+ Baikovletter [2401.07632] misses one of the new five-point roots...

v Not really an issue, we know it's there




Computing Feynman Integrals: Symbol Alphabet

di(x.e)=e( D AdlogW(x) | F(x.e)

family | dim(fam) || family | dim(fam)
Pa 16 PBmzz 105
Pb 15 PBzmz 104
PBmmz 94 PBzzm 104
PBmzm 87 PBzzz 127

Table 1: Number of master integrals in each family

family | dim(Agay) || family | dim(Agam)
Pa 43 PBmzz 80
Pb 39 PBzmz 96
PBmmz 85 PBzzm 82
PBmzm 92 PBzzz 104

v Owverall, 570 independent letters for two-loop five-point two-mass kinematics

v Even letters (215): polynomials/rational functions in the kinematic variables

W P(s) + Q) A®)

v Odd letters in one square root (236):

> in this case, there are 44 different A(s)

v Odd letters in two square roots (119):

v Most letters from Baikovletter, others (mostly odd) we determine ourselves

P(s) — Q) A®)

W P(5) + O/ Ay (5)4/Ay(s)

P — QGA (9)y/As)

Table 2: Dimension of the alphabet for each family

[Heller, von Manteuffel, Schabinger, 20]

[Abreu, Ita, Page, Tschernow, 20]



Computing Feynman Integrals: Summary

+ Differential equations compute all master integrals in one go

v Getting the diff. eq. relies on IBPs, find ways around it

+ Pure bases: singular structure manifest and simplify ¢ dependence
v Factorised problem: determine the singularities

v Use numerical IBPs to get analytic differential equations

+ Very explicit and compact analytic representation for Feynman integrals

v Gives important information for amplitude calculation

v Sufficient for formal studies =./ = 4 sYM calculations

+ How do we solve the differential equations? i.e., how to get numbers!?

v Determine the initial conditions

v Find efficient ways to get numerical evaluations

16



17

+ General solution singular at all W; = 0 but Feynman integrals are not

v Imposing this condition allows to determine the initial condition!
Used for 5pt Tm @ 2loops, [Abreu, Ita, Moriello, Page, Tschernow, Zeng, 20, 21]

+ AMFlow approach: [Liu, Ma, 22]

v Go to (non-physical) limit where all integrals become tadpoles, known to 5 loops

v Evolve back to physical points Used for 5pt Tm @ 2loops, [Abreu et al, 23]

v Obtain high-precision (0O(100) digits) numerical evaluation at random point

+ In our case: Euclidean/physical-region initial conditions {s,,, sy, 534, 545, 5155 54, 55}
3 57 23 5
Xeu = (_57_3)_§a_17 —g,—ll,—l) Xo = (73_1,2a5a -2,1, 1)

v 80 digits evaluations (took ~ 1 week). Sufficient for pentagon functions



Evaluating Feynman Integrals: Solving the DEs

+ Trivial solution in terms of Chen iterated integrals, order by orderin ¢

(W5 W, 5 (5) =J (Wi, ... W, l5dlogW; ~ y connects 5,and 5 ; L5,
y
v Formal solution, not trivial to evaluate...

+ Numerica| SOIUtion [Moriello, 19 ; Hidding, 20; Armadillo et al,
v Start from known initial condition, and evolve along path
v Generalised power-series solution with finite convergence radius

S Ni’k .. i1 .
DY B — g)Tlog (t — 1)

J1=0j,=0
v High-precision, but slow...

+ Write solution in terms of special functions (multiple polylogarithms, ...) ...

22

18

; Liu, Ma, 22]

For planar 5pt Tm @ 2|oops, [Canko, Kardos, Papadopoulos, Smirnov, Syrrakos, Wever 20-22]

+ Roots make it hard/impossible, and not the most convenient representation

v Introduces spurious singularities

v complicated branch cut structure means expression only valid in small region



Evaluating Feynman Integrals: Pentagon Functions 19

[Gehrmann, Henn, Lo Presti, 18]

+ Master integrals are linearly independent before expansion in € hrmann, Her
[Chicherin, Sotnikov, 20]

+ After expansion in ¢, there are new relations:
>(I>< ~ >@< ~ ><E ~ 1y+ 1€ In(s) + rye? In’(s) + ...

+ Make relations explicit: build basis of special functions at each orderin €

+ Improved algorithm for two-loop five-point one-mass processes
[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 23]

1. Solve in terms of Chen iterated integrals, order by order in €

[W/ila cees M/ZW]EO(E)) =[ [VVZE’ <oy mw_1]§0dlog ‘A/iw
Y
v Simple algebra for Chen iterated integrals (with dlog kernels)!

2. Choose components of Feynman integrals as pentagon functions

3. Use "'symbol technology’ to write all integrals in terms of basis

4. Implement in C++ code



Evaluating Feynman Integrals: Pentagon Functions

20

Five-point one-mass scattering at two loops

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 23]

10° E — F5y One-mass pentagon functions prmnrEaanrasa e 10°
| — Fsy PentagonFunctions++ ]
10* 1 izr:;ulative 3 1071
g | Ave time per point: 3 s £ v Standard precision, no rescue system
2 10°F 41028
I - . .
5 = v Precision loss because of square root
2 102k q107° %
z =
101 E E 10—4
100_ ,|'||'||'|,|-| . : I I I _510—5
-2 0 2 4 6 8 10 12 14 16
R (correct digits)
109 e e = e e e 100
F —— All functions One-mass pentagon functions ;
- (mixed precision) PentagonFunctions++
104 cumulative J10-1
. & Avg. time per point: 9 s E
v With rescue system 5 et Jo2%
5 |
v Easy to implement if good 200k {103 %
: Z | £
control of analytic structure . [
10° - : nnn n : : : : : : - 107°
-2 0 2 4 6 8 10 12 14 16

R (correct digits)

v Ready for phenomenological applications!



summary and Outlook 21

+ We have mature tools that allow us to push the state of the art

v Pheno-ready integrals available for 5pt massless and 5pt one-mass processes

v Progress in tWO-IOOp five-point two-mass processes was much faster
[Abreu, Chicherin, Sotnikov, Zoia, to appear]

+ New results obtained with pheno in mind leading to new formal studies

v Five-point one-mass integrals used in /' = 4 bootstrap program
le.g., Dixon, Gurdogan, Liu, McLeod, Wilhelm 23]

+ Are pentagon functions actually a good basis?

v We know that they are not at one loop

v Include rational factors to make them have better behaved limits

+ New challenges ahead: what if singularities are not all dlogs?

v Elliptic integrals and beyond!

v Alot of developments, but still missing heavy machinery



THANK YOU!



