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Goal, Focus and Slogans 3

Main goal: compute Feynman integrals to make their analytic structure 
transparent, and so that we can evaluate them in a stable and efficient way 

Focus: Planar Feynman integrals for processes with five external particles, 
two of them massive, and with massless propagators

✦ This should be easy and boring!

✓ Everything that can be made massless was made massless

✓ Describing processes with 3 particles in the final state at 2nd order in perturbation theory

✓ Functions that appear are the ones we’ve been saying we understand well for a long time!

✓ Five-point one-mass @ 2 loops was not that easy…

✓ … but we have better tools and it actually was simple for five-point two-mass @ 2 loops!

✓ First explorations in [2401.07632, Jiang, Liu, Xu, Yang, 24]



Precision! 4

✦ Amplitudes for NNLO corrections (five-point processes)

SOLVED UNDER GOOD  
CONTROL

CURRENT 
FRONTIER

σNNLO = σRR + σRV + σVV

✦ Percent-level precision

σ = σLO ( 1 + αsσNLO + α2
s σNNLO) + 𝒪(α3

s )
∼ 𝒪(10%) ∼ 𝒪(1%)

σ ∼ ∫ dΦ 𝒜
2

✦ Factorisation of work: amplitudes and phase-space integration
NB: Divergences appear, work in 

Dimensional Regularisation, 
D = 4 → D = 4 − 2ϵ

[See Fabrizio’s, Federico’s, Vasily’s, Andreas’ talks]



Amplitudes and Feynman Integrals 5

𝒜 = ∑ ci( ⃗p; ϵ) mi( ⃗p; ϵ)

Master coefficients 
- process/theory specific 
- rational functions 

Master integrals 
- kinematic dependent 
- `special’ functions 

2. How to compute (multi-scale) Feynman integrals?

1. Feynman integrals as vector spaces
✓ Integration-by-parts (IBP) relations and master integrals

✦ Natural factorisation

✓ Differential equations and pure basis

3. How to (efficiently) evaluate Feynman integrals?
✓ Numerical methods and pentagon functions

}

}

Enough for formal studies, 
e.g.,  sYM𝒩 = 4

Non-trivial, required for 
pheno studies



Feynman Integrals as Vector Spaces: IBP relations 6

✦ IBP relations can generate integrals with new propagators
✓ A family/topology contains enough propagators for this not to happen

✦ Integrals in a family related by IBP relations, rational in scales and D
✓ Reduce integrals to a set of master integrals

✦ Each family defines a (finite dimensional) vector space
✓ Like for any vector space, some bases are better than others

✦ The number of master integrals is always finite
✓ Computed from critical points, Euler characteristics, …
✓ Finite number of integrals needed to solve a family

I(p1, …, pE; m2
1 , …, m2

p ; ν; D) = ∫
L

∏
j=1

eγEϵ
dDkj

iπD/2

𝒩({kj ⋅ kl, kj ⋅ pl}; D)

∏p
j=1 (m2

j − q2
j − iε)νj

∫ dDki
∂

∂kμ
i

vμ
𝒩({kj ⋅ kl, kj ⋅ pl}; D)

∏p
j=1 (m2

j − q2
j − iε)νj

= 0

‣ Linear relations of integrals with different νj

[Tkachov; Chetyrkin, Tkachov, 81]



Feynman Integrals as Vector Spaces 7

✓ Penta-boxes:

✓ Hexa-boxes:

✓ Double pentagons:

74 75 86

1358686

142 179

[2005.04195]

[2107.14180]

[2306.15431]

Example 1: five-point one-mass scattering at two loops ; Planar VS Non-Planar

✓ Depend on 6 variables



Feynman Integrals as Vector Spaces 8

87

127

Example 2: five-point two-mass scattering ; one VS two loops

✓ Depend on 7 variables

94 105

104104

16 15

[2401.07632, Jiang, Liu, Xu, Yang, 24]



Feynman Integrals as Vector Spaces: Summary 9

✦ All about solving IBP relations

✓ IBP relations are easy to write, but hard to solve
✓ Several approaches: Laporta’s algorithm (most successful approach), 

intersection theory, recurrence relations, …

✦ Bottleneck in many applications

✓ Bypass large analytic expressions with numerical evaluations (in finite fields)

✦ Implemented in several public codes
✓ Kira, FIRE, NeatIBP, FiniteFlow, Reduze, LiteRed …

✓ Only use analytics when it cannot be avoided



Computing Feynman Integrals: Differential Equations 10

✓ Analytic/numerical integration of parametric representation

✦ Many ways to compute Feynman integrals

✓ Transform into differential equation problem

✦ Goal: evaluate integrals around  dimensions (as expansion in )D = 4 ϵ

✦ Let  be a set of master integrals ; it is closed under differentiation⃗ℐ

∂xi
⃗ℐ(x, ϵ) = Axi

(x, ϵ) ⃗ℐ(x, ϵ)

✓ Derivatives change powers of propagators  reduce to masters with IBPs⇒
✓ IBPs are rational in  and   has rational entries x D = 4 − 2ϵ ⇒ Axi

(x, ϵ)
✓ For generic , not clear we gain a lot… but some bases are better than others!⃗ℐ

∂m2
1

⃗ℐ = (−I(2,1)
−I(2,0)) =

(D − 3)(m2
1 − p2)

(p2 − m2
1)2

(D − 2)(m2
1 − p2)

2m2
1(p2 − m2

1)2

0 D − 2
2m2

1

⃗ℐ

Example: one-loop bubble with one massive propagator, ℐ = {I(1,1), I(1,0)}

[Kotikov, 91; Bern et al, 94; Remiddi, 97; Gehrmann, Remiddi 00]



Computing Feynman Integrals: Pure Bases 11

d ⃗𝒥(x, ϵ) = ϵ A(x) ⃗𝒥(x, ϵ)

✓ only has logarithmic singularities, explicit in the differential equation

A(x) = ∑
i

Ai d log Wi

✓  are matrices of rational numbers, all  dependence in Ai x Wi

✓ organises  dependence, easier to solve order by order ϵ
✓ solution trivial to write in terms of iterated integrals, order by order in  ϵ

✦ If possible (!!), find new basis  such that⃗𝒥(x, ϵ)

✦ All analytic information made manifest
✓  give logarithmic singularities/branch cuts: symbol alphabetWi

✓  tell us how singularities interact: (extended) Steinmann relations, …Ai

[Henn, 13]

Example: Pure basis for one-loop bubble with one massive propagator ( )u = p2/m2
1

∂u
⃗𝒥(u; ϵ) = ϵ [(−2 0

0 0) dlog (1 − u) + (1 −1
0 0 ) dlog u] ⃗𝒥(u; ϵ)



Computing Feynman Integrals: Pure Bases 12

✦ No general algorithm to find a pure basis (automated codes exist, with limitations)
✓ leading singularities

✓ ideas from  sYM𝒩 = 4
✓ cuts/on-shell differential equations  

✦ Leading singularities: this is where square roots appear!

d ⃗𝒥(x, ϵ) = ϵ(∑
i

Ai d log Wi(x)) ⃗𝒥(x, ϵ)

∼
1
Δ3

𝒯 ✓ Determine  without computing the integralΔ3

✦ 44 square roots for 2-loop 5-pt 2mass (10 for 2-loop 5-pt 1m)!

✓ 3-point Gram , degree 2: 7 permutationsΔ3
✓ 5-point Gram , degree 4: 1 permutationΔ5

✓ Compute as residue of integrand

✓ 4-point 3-mass root, degree 4: 18 permutations
✓ New degree 4 root: 6 permutations
✓ New degree 4 root: 12 permutations



Computing Feynman Integrals: The New Roots 13

∼
1

Q2
1 − Q2

2
∼

1
Δ3

∼
1

st − Q2
1Q2

3
∼

1

Δ□

= ∫ dℓ2
1

D1D2D3

1
Δ3(ℓ2)

= ∫ dℓ1
1

D1D2

1
st(ℓ1) − Q2

1(ℓ1)p2
5

= ∫ dℓ2
1

D1D2D3

1
Q2

1(ℓ2) − Q2
2(ℓ2)

Q1

Q2
= ∫ dℓ1

1
D1D2

1

Δ□(ℓ1)

🎉

Q1

Q2
✓ Need to work a bit harder 

to compute root…

✦ Side comment: one of the integrals comes with two roots!

∼
1

Δ3 Δ5



Computing Feynman Integrals: Alphabets and Letters 14

✦ The  give singularities of Feynman integrals  Landau conditionsWi ⇒
✓ Factorisation of work: determine  without computing the differential equation!Wi

✦ Getting diff. eq. relies on IBPs: difficult to do analytically…

✦ If the  are known, determine the  from numerical IBPs!Wi Ai
✓ removes the IBP bottleneck, allows to attack multi-scale problems

✓ Active area of research in Amplitudes area: coactions, solving Landau conditions, principal 
A-determinants, Gram determinants, Schubert problem, …

✓ Two highlights: [2311.14669, Fevola, Mizera, Telen], [2401.07632, Jiang, Liu, Xu, Yang, 24]

d ⃗𝒥(x, ϵ) = ϵ(∑
i

Ai d log Wi(x)) ⃗𝒥(x, ϵ)

✦ Baikovletter [2401.07632] misses one of the new five-point roots…
✓ Not really an issue, we know it’s there 



Computing Feynman Integrals: Symbol Alphabet 15

✓ Overall, 570 independent letters for two-loop five-point two-mass kinematics

✓ Even letters (215): polynomials/rational functions in the kinematic variables

✓ Odd letters in one square root (236): W =
P( ⃗s ) + Q( ⃗s ) Λ( ⃗s )

P( ⃗s ) − Q( ⃗s ) Λ( ⃗s )
‣ in this case, there are 44 different Λ( ⃗s )

✓ Odd letters in two square roots (119): W =
P( ⃗s ) + Q( ⃗s ) Λ1(s) Λ2(s)

P( ⃗s ) − Q( ⃗s ) Λ1(s) Λ2(s)

✓ Most letters from Baikovletter, others (mostly odd) we determine ourselves
[Heller, von Manteuffel, Schabinger, 20]

[Abreu, Ita, Page, Tschernow, 20]

d ⃗𝒥(x, ϵ) = ϵ (∑
i

Ai d log Wi(x)) ⃗𝒥(x, ϵ)



Computing Feynman Integrals: Summary 16

✦ Differential equations compute all master integrals in one go
✓ Getting the diff. eq. relies on IBPs, find ways around it  

✦ Pure bases: singular structure manifest and simplify  dependenceϵ
✓ Factorised problem: determine the singularities
✓ Use numerical IBPs to get analytic differential equations

✦ How do we solve the differential equations? i.e., how to get numbers!?

✦ Very explicit and compact analytic representation for Feynman integrals

✓ Determine the initial conditions
✓ Find efficient ways to get numerical evaluations

✓ Gives important information for amplitude calculation
✓ Sufficient for formal studies  sYM calculations⇒𝒩 = 4



Evaluating Feynman Integrals: Initial Condition 17

✦ General solution singular at all  but Feynman integrals are not Wi = 0
✓ Imposing this condition allows to determine the initial condition!

✦ AMFlow approach:
✓ Go to (non-physical) limit where all integrals become tadpoles, known to 5 loops

✓ Evolve back to physical points

[Liu, Ma, 22]

Used for 5pt 1m @ 2loops, [Abreu, Ita, Moriello, Page, Tschernow, Zeng, 20, 21]

Used for 5pt 1m @ 2loops, [Abreu et al, 23]

d ⃗𝒥(x, ϵ) = ϵ(∑
i

Ai d log Wi(x)) ⃗𝒥(x, ϵ)

✓ Obtain high-precision (  digits) numerical evaluation at random point𝒪(100)

✦ In our case: Euclidean/physical-region initial conditions {s12, s23, s34, s45, s15, s4, s5}

✓ 80 digits evaluations (took ~ 1 week). Sufficient for pentagon functions



Evaluating Feynman Integrals: Solving the DEs 18

✦ Trivial solution in terms of Chen iterated integrals, order by order in ϵ

[Wi1, …, Wiw] ⃗s0
( ⃗s ) =∫γ

[Wi1, …, Wiw−1
] ⃗s0

dlog Wiw ‣  connects  and  ; γ ⃗s0 ⃗s [] ⃗s0
≡ 1

✓ Formal solution, not trivial to evaluate…

✦ Numerical solution
✓ Start from known initial condition, and evolve along path

✓ Generalised power-series solution with finite convergence radius
∞

∑
j1=0

Ni,k

∑
j2=0

c(i, j1, j2)
k (t − tk)

j1
2 log (t − tk)

j2

[Moriello, 19 ; Hidding, 20; Armadillo et al, 22; Liu, Ma, 22]

✓ High-precision, but slow…

✦ Write solution in terms of special functions (multiple polylogarithms, …) …
For planar 5pt 1m @ 2loops, [Canko, Kardos, Papadopoulos, Smirnov, Syrrakos, Wever 20-22]

✓ complicated branch cut structure means expression only valid in small region 

✓ Introduces spurious singularities 

✦ Roots make it hard/impossible, and not the most convenient representation



Evaluating Feynman Integrals: Pentagon Functions 19

✦ After expansion in , there are new relations:ϵ

∼ ∼ ∼ r0 + r1 ϵ ln(s) + r2 ϵ2 ln2(s) + …

✦ Make relations explicit: build basis of special functions at each order in ϵ

[Gehrmann, Henn, Lo Presti, 18]
[Chicherin, Sotnikov, 20]

✦ Master integrals are linearly independent before expansion in ϵ

1. Solve in terms of Chen iterated integrals, order by order in ϵ

[Wi1, …, Wiw] ⃗s0
( ⃗s ) =∫γ

[Wi1, …, Wiw−1
] ⃗s0

dlog Wiw

✓ Simple algebra for Chen iterated integrals (with dlog kernels)!

2. Choose components of Feynman integrals as pentagon functions

3. Use `symbol technology’ to write all integrals in terms of basis

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 23]

✦ Improved algorithm for two-loop five-point one-mass processes

4. Implement in C++ code



Evaluating Feynman Integrals: Pentagon Functions 20
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✓ Standard precision, no rescue system

✓ With rescue system

✓ Ready for phenomenological applications!

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 23]Five-point one-mass scattering at two loops

✓ Easy to implement if good 
control of analytic structure

✓ Precision loss because of square root



Summary and Outlook 21

✦ We have mature tools that allow us to push the state of the art
✓ Pheno-ready integrals available for 5pt massless and 5pt one-mass processes

✦ New results obtained with pheno in mind leading to new formal studies
✓ Five-point one-mass integrals used in  bootstrap program𝒩 = 4

[e.g., Dixon, Gurdogan, Liu, McLeod, Wilhelm 23]

✓ Progress in two-loop five-point two-mass processes was much faster

✦ New challenges ahead: what if singularities are not all dlogs?
✓ Elliptic integrals and beyond!

[Abreu, Chicherin, Sotnikov, Zoia, to appear]

✦ Are pentagon functions actually a good basis?
✓ We know that they are not at one loop
✓ Include rational factors to make them have better behaved limits

✓ A lot of developments, but still missing heavy machinery



THANK YOU!


