Top-Bottom Interference Contribution to Fully-Inclusive Higgs Production

Marco Niggetiedt

with M. Czakon, F. Eschment, R. Poncelet, T. Schellenberger and J. Usovitsch

based on

JHEP 02 (2024) 087 [arXiv:2312.09896]

2nd Workshop on Tools for High Precision LHC Simulations

Castle Ringberg May 10th 2024

Gluon fusion

- Gluon fusion is the predominant Higgs boson production mode at the LHC
 - loop induced process

- Higgs boson plays unique role in the SM:
 - Only scalar particle
 - > Only particle with Yukawa interactions to fermions
- Predictions for gluon fusion cross section directly impact extraction of Higgs couplings from experimental measurements
- Reducing theory uncertainty is crucial for facilitating high precision measurements of Higgs couplings at the LHC
- ➢ High luminosity LHC projections anticipate uncertainty 𝒪(2%) and theory uncertainty to be halved WG2 Report `19

All sources O(1%)

Order by order in perturbation theory

• LO contribution exactly known for almost 50 years

Georgi, Glashow, Machacek, et al. `78

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
	+ 0.34 pb	(+0.7%)	$(NNLO, 1/m_t)$
	$+ 2.40\mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

Order by order in perturbation theory

• LO contribution exactly known for almost 50 years

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
	+ 0.34 pb	(+0.7%)	$(NNLO, 1/m_t)$
	$+ 2.40\mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

• NLO contribution exactly known for arbitrary quark masses running in the loop Graudenz, Spira, Zerwas `93

Inclusive cross section in (r)EFT

 LO contribution exactly known for almost 50 years

Georgi, Glashow, Machacek, et al. `78

• NLO contribution exactly known for arbitrary quark masses running in the loop Graudenz, Spira, Zerwas `93

Chetyrkin, Kniehl, Steinhauser `98 Schröder, Steinhauser `06 Chetyrkin, Kühn, Sturm `06

$$\sigma_{\rm HEFT}^{\rm HO} = \left(\frac{\sigma^{\rm HO}}{\sigma^{\rm LO}}\right)_{M_{\rm t}\to\infty} \sigma^{\rm LO}$$

Computation

Ingredients for exact quark mass effects at NNLO

• Beyond NLO:

Analytically: Del Duca, Kilgore, Oleari, et al. `01 OpenLoops 2: Buccioni, Lang, Lindert, et al. `19 Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

Ingredients for exact quark mass effects at NNLO

• Beyond NLO:

Analytically: Del Duca, Kilgore, Oleari, et al. `01 OpenLoops 2: Buccioni, Lang, Lindert, et al. `19 Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

Double-virtual corrections One massive flavor

Double-virtual corrections

Two massive flavors

- Solution strategy:
 - \blacktriangleright Compute expansions for $m_b^2 \ll m_H^2 \ll m_t^2$
 - Sample remaining parameter space numerically

Workflow of the Computation

- Variables: *x*, *y*
- Differential operators in {x, y} can be expressed in terms of derivatives with respect to {m_t², m_b²}
- Exploit symmetry:

$$C_{tb}^{(2)}(x,y) = C_{bt}^{(2)}(y,x)$$

 $x = m_t^2 / m_H^2$ $y = m_b^2 / m_H^2$

Gehrmann, Remiddi `00

Kotikov `91

• Solve ~300 MIs numerically using AMFlow Liu, Ma `22

Deep asymptotic expansions

• Employ differential equations for MIs:

$$x = m_t^2/m_H^2$$
$$y = m_b^2/m_H^2$$

$$\frac{\mathrm{d}M_i(x,y,\epsilon)}{\mathrm{d}x} = A_{ij}(x,y,\epsilon) M_j(x,y,\epsilon) \qquad \longleftarrow \qquad M_i(x,y,\epsilon) = \sum_{l=0}^{\overline{n}_i - \underline{n}_i} \epsilon^{\underline{n}_i + l} I_{\underline{k}_i + l}(x,y)$$

$$\frac{\mathrm{d}I_k(x,y)}{\mathrm{d}x} = B_{kl}(x,y) I_l(x,y)$$
• Solution ansatz for $x \to \infty$:

Anastasiou, Beerli, Bucherer `06

von Manteuffel, Tancredi `17

Deep asymptotic expansions

• Employ differential equations for MIs:

$$x = m_t^2 / m_H^2$$
$$y = m_b^2 / m_H^2$$

$$\frac{\mathrm{d}M_i(x,y,\epsilon)}{\mathrm{d}x} = A_{ij}(x,y,\epsilon) M_j(x,y,\epsilon) \qquad \longleftrightarrow \qquad M_i(x,y,\epsilon) = \sum_{l=0}^{\overline{n}_i - \underline{n}_i} \epsilon^{\underline{n}_i + l} I_{\underline{k}_i + l}(x,y)$$

$$\frac{\mathrm{d}I_k(x,y)}{\mathrm{d}x} = B_{kl}(x,y) I_l(x,y)$$

$$\cdot \text{ Solution ansatz for } x \to \infty:$$

$$I_k(x,y) = \sum_{l=\underline{l}_k}^{\infty} \sum_{m=0}^{\overline{m}_k} c_{klm}(y) \frac{\mathrm{log}^m(x)}{x^l} \qquad (\text{rational functions multiplying boundary condition})$$

$$\{1, i\pi, \pi^2, \zeta_3, \log(y), \mathrm{HPL}(\ldots, y), \mathrm{elliptic}\}$$

Anastasiou, Beerli, Bucherer `06

von Manteuffel, Tancredi `17

Deep asymptotic expansions

• Employ differential equations for MIs:

$$x = m_t^2 / m_H^2$$
$$y = m_b^2 / m_H^2$$

 $\rightarrow 000$

More efficient: Sample expansion coefficients for <u>different values of y</u> and reconstruct exact form at the <u>amplitude level</u>

Anastasiou, Beerli, Bucherer `06

von Manteuffel, Tancredi `17

Ingredients for exact quark mass effects at NNLO

Double-virtual corrections

• Beyond NLO:

Analytically: Del Duca, Kilgore, Oleari, et al. `01 OpenLoops 2: Buccioni, Lang, Lindert, et al. `19 Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

Ingredients for exact quark mass effects at NNLO

• Beyond NLO:

Real-virtual corrections

A,B,C,D: Bonciani, Del Duca, Frellesvig, et al. `16F: Bonciani, Del Duca, Frellesvig, et al. `19G: Frellesvig, Hidding, Maestri, et al. `19

Contributions with two closed fermion chains are always factorizable:

Parametrization

- Variables: \hat{s} , \hat{t} , \hat{u} , m_H^2 , m_q^2
- Introduce dimensionless variables and $\underline{\rm fix}\;{\rm ratio}\;m_q^2/m_H^2$
 - $\succ z$ parametrizes soft limit
 - $\succ \lambda$ parametrizes collinear limit

000

000

$$\hat{t}/\hat{s} = z \lambda$$

$$\hat{u}/\hat{s} = z (1-\lambda)$$

$$z = 1-m_H^2/\hat{s}$$

$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$

$$z = 1 - m_H^2 / \hat{s}$$

$$\lambda = \hat{t} / (\hat{t} + \hat{u})$$

$$m_t^2 / m_H^2 = 23/12$$

$$m_b^2 / m_H^2 = 1/684$$

Range of parameters:
• $\lambda \in (0,1)$
• $z \in (0,1)$
• $z \in (0,1)$

Evolution of differential equations

$$z = 1 - m_H^2 / \hat{s}$$

$$\lambda = \hat{t} / (\hat{t} + \hat{u})$$

$$m_t^2 / m_H^2 = 23/12$$

Range of parameters:
• $\lambda \in (0,1)$
• $z \in (0,1)$

 $z = 1 - m_H^2 / \hat{s}$

 $z = 1 - m_H^2 / \hat{s}$

$$z = 1 - m_H^2 / \hat{s}$$

$$\lambda = \hat{t} / (\hat{t} + \hat{u})$$

$$m_t^2 / m_H^2 = 23/12$$

Range of parameters:
• $\lambda \in (0,1)$
• $z \in (0,1)$

Region below threshold covered by LME

LME ${\cal O}((1/m_q^2)^{40})$

Evolution of differential equations

$$z = 1 - m_H^2 / \hat{s}$$

$$\lambda = \hat{t} / (\hat{t} + \hat{u})$$

$$m_b^2 / m_H^2 = 1/684$$

Range of parameters:
• $\lambda \in (0,1)$
• $z \in (0,1)$

 $z=1-m_H^2/\hat{s}$

 $z = 1 - m_H^2 / \hat{s}$

Construction of amplitudes

- Collected 2×10^6 numerical samples for MIs at m_t^2/m_H^2 by evaluation of the LME and numerical evolution above threshold
- Collected 1×10^6 numerical samples for MIs at m_b^2/m_H^2 via numerical evolution in the entire phase space

Insert into form factors and construct helicity amplitudes

Ingredients for exact quark mass effects at NNLO

• Beyond NLO:

Phase space integration individual contributions performed using **Stripper** framework Czakon `10

Note on the flavor scheme

• Subsets of diagrams in real-virtual and double virtual contribution give rise logarithmic mass divergences

4-flavor scheme

- Consistent treatment of massive t- and b-quarks
- Exclude b-quark from initial state
- Include massive b-quark splittings in final state

5-flavor scheme

- Treat b-quark as massless particle
- Massive b-quark only present in loops directly attached to the Higgs-boson
- Corresponds to theory with a replica b-quark carrying the mass of a heavy b-quark

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{ m HEFT} ~[m pb]$	$(\sigma_t - \sigma_{\text{HEFT}})$ [pb]	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 8 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+7.39	—	-0.895	
LO	$7.39^{+1.98}_{-1.40}$	—	$-0.895^{+0.17}_{-0.24}$	-12
$\mathcal{O}(lpha_s^3)$	+9.14	-0.0873	-0.268	
NLO	$16.53^{+3.63}_{-2.73}$	$-0.0873^{+0.030}_{-0.052}$	$-1.163^{+0.10}_{-0.08}$	$-7.0^{+1.0}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+4.19	+0.0523(2)	+0.167(3)	
NNLO	$20.72^{+1.84}_{-2.06}$	$-0.0350(2)^{+0.048}_{-0.013}$	$-0.996(3)^{+0.12}_{-0.05}$	$-4.8^{+0.9}_{-0.8}$
		$\sqrt{s} = 13 \text{ TeV}$	T	
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t pprox 173.055 GeV and m_b pprox 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	T	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30\substack{+4.36\\-3.10}$	—	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10\\-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

> Interference effects much larger than pure top mass effect

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t pprox 173.055 GeV and m_b pprox 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{ m HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}} [\%]$
		$\sqrt{s} = 13 \text{ TeV}$	r	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30\substack{+4.36 \\ -3.10}$	—	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

> Interference effects much larger than pure top mass effect

Interference effect at NNLO cancels against NLO

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	-	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO

Czakon, Eschment, MN, Poncelet, Schellenberger `23

Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	*	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10\\-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO

- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} \; [\text{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	τ	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30\substack{+4.36\\-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- > Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ and $m_b \approx 4.779 \text{ GeV}$ (OS-scheme, but Y_b in \overline{MS} with $\overline{m}_b(\overline{m}_b) \approx 4.18 \text{ GeV}$)
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{ m HEFT} \ [m pb]$	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} \left(Y_{b,\overline{\mathrm{MS}}} \right) [\mathrm{pb}]$
		$\sqrt{s} = 13 \text{ TeV}$	r	
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	-1.223
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98^{+0.38}_{-0.53}$	$-1.22^{+0.29}_{-0.44}$
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	-0.623(1)
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-1.85^{+0.26}_{-0.26}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	+0.019(5)
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-1.83(1)^{+0.08}_{-0.03}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)
- Improved convergence in mixed renormalization scheme compared to OS-scheme

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ (OS-scheme) and m_b in \overline{MS} -scheme with $\overline{m}_b(\overline{m}_b) \approx 4.18 \text{ GeV}$
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{ m HEFT} \ [m pb]$	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} \; [\mathrm{pb}]$	$\sigma_{t \times b} \left(Y_{b,\overline{\mathrm{MS}}} \right) [\mathrm{pb}]$	$\sigma_{t \times b} \left(\overline{m}_b \right) [\text{pb}]$
		\checkmark	$\overline{s} = 13 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	-1.223	-1.118
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98^{+0.38}_{-0.53}$	$-1.22^{+0.29}_{-0.44}$	$-1.118^{+0.28}_{-0.43}$
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	-0.623(1)	-0.647
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-1.85^{+0.26}_{-0.26}$	$-1.76^{+0.27}_{-0.28}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	+0.019(5)	+0.02(1)
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-1.83(1)^{+0.08}_{-0.03}$	$-1.74(2)^{+0.13}_{-0.01}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO

Czakon, Eschment, MN, Poncelet, Schellenberger `23 (preliminary)

- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)
- Improved convergence in mixed renormalization scheme compared to OS-scheme
- > Similar pattern of corrections for m_b in \overline{MS} -scheme

Summary and outlook

- The top-bottom interference contribution to the total Higgs production cross section was computed with *both* quarks renormalized in the OS-scheme
 - \succ $\mathcal{O}(\alpha_s^4)$ correction at 8 TeV: +0.167 pb
 - $\succ \mathcal{O}(\alpha_s^4)$ correction at 13 TeV: +0.434 pb
- > NNLO correction at 13 TeV: $-1.99(1)^{+0.30}_{-0.15}$ pb compatible with previous estimate $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin 20
- > Top-quark and interference contribution not sensitive to small variations of the top-quark mass
- Interference shows signs of poor perturbative convergence
 - \blacktriangleright Better convergence in \overline{MS} -scheme for the bottom-quark mass or Yukawa coupling only
- Cross checks: at the differential level
 - Jones, Kerner, Luisoni `18
 - Caola, Lindert, Melnikov, et al. `18
- > Next steps:
 - Complete calculation with quark masses renormalized in MS-scheme (compare e.g. Bonciani, Del Duca, Frellesvig, et al. 22)
 - Consistent treatment of massive quarks in 4-flavor scheme
 - Top-charm interference contribution