

Zero-jettiness soft function at N3LO in QCD

in collaboration with Daniel Baranowski, Maximilian Delto, Andrey Pikelner and Kirill Melnikov Based on 2111.13594 & 2204.09459 & 2401.05245 and work in preparation. Chen-Yu Wang | 2024-05-11 | Ringberg 2024

Outline

- 1. Introduction
- 2. Single-real corrections
- 3. Double-real corrections
- 4. Triple-real corrections
- 5. Outlook and conclusion

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	000000	000

Motivation

- The ever-increasing experimental precision at the LHC and the HL-LHC in the future demands percent level precision from the theoritical side. *ATLAS 2019; CMS 2021*
- On the theoretical side many N3LO calculations and phenomenology results are available.
- Computing differential cross-section requires subtracting infrared divergences in the phase space:
 - Slicing:
 - q_T subtraction scheme Catani and Grazzini 2007
 - N-jettiness subtraction scheme Boughezal, Focke, et al. 2015; Gaunt et al. 2015
 - Subtraction:
 - CoLoRFull Somogyi et al. 2005
 - Antenna Gehrmann-De Ridder et al. 2005
 - STRIPPER Czakon 2010
 - Nested soft-collinear subtraction Caola et al. 2017
 - Local analytic sector subtraction Magnea et al. 2018
 - Project-to-Born Cacciari et al. 2015

• ...

ntroduction	RVV	RRV	RRR	Conclusion
00000	0	0000000	000000	000

Motivation

 To obtain differential cross sections, one can use slicing to extract and cancel infrared divergences properly:

$$\sigma(O) = \int_0 \mathrm{d}\tau \frac{\mathrm{d}\sigma(O)}{\mathrm{d}\tau} = \int_0^{\tau_0} \mathrm{d}\tau \frac{\mathrm{d}\sigma(O)}{\mathrm{d}\tau} + \int_{\tau_0} \mathrm{d}\tau \frac{\mathrm{d}\sigma(O)}{\mathrm{d}\tau}.$$

- q_T subtraction scheme Catani and Grazzini 2007
- N-jettiness subtraction scheme Boughezal, Focke, et al. 2015; Gaunt et al. 2015
- q_T subtraction scheme is available up to N3LO Li and Zhu 2017; Ebert et al. 2020b; Luo et al. 2020
- N-jettiness factorization theorem derived in SCET Stewart et al. 2010a,b

$$\lim_{\tau \to 0} \mathrm{d} \sigma(O) = B \otimes B \otimes \sum_i J_i \otimes S_N \otimes H \otimes \mathrm{d} \sigma_{\mathrm{LO}} + \mathcal{O}(\tau).$$

- Beam function B @ N3LO Ebert et al. 2020a; Baranowski et al. 2023
- Jet function J @ N3LO Banerjee et al. 2018; Brüser et al. 2018
- Soft function S_N @ N2LO Hornig et al. 2011; Kelley et al. 2011; Monni et al. 2011; Boughezal, Liu, et al. 2015; Bell et al. 2018; Campbell et al. 2018; Jin and Liu 2019

Introduction	RVV	RRV	RRR	Conclusion
00000	0	0000000	000000	000

Definition

Zero-jettiness is defined as

$$\tau = \sum_{i=1}^m \min_{j \in 1,2} \left[\frac{2q_j \cdot k_i}{Q_j} \right] = \sum_{i=1}^m \min\{\alpha_i, \beta_i\}.$$

where min(...) can be written out using the Heaviside θ function:

$$\delta\left(\tau - \sum_{i=1}^{m} \min\{\alpha_{i}, \beta_{i}\}\right) = \delta\left(\tau - \beta_{1} - \beta_{2} - \ldots\right) \theta(\alpha_{1} - \beta_{1})\theta(\alpha_{2} - \beta_{2}) \dots + \delta\left(\tau - \alpha_{1} - \beta_{2} - \ldots\right) \theta(\beta_{1} - \alpha_{1})\theta(\alpha_{2} - \beta_{2}) \dots + \dots$$

and the second second

c •

 $nn\overline{n}$ configuration

Teleeeeeeee

-1

Sudakov decomposition:
$$k_i = \frac{\alpha_i}{2}n + \frac{\beta_i}{2}\overline{n} + k_{\perp,i}$$
, where $\alpha_i = k_i \cdot \overline{n}$, $\beta_i = k_i \cdot n$, and $n \cdot \overline{n} = 2$.

Definition: Amplitude @ N3LO

- \blacksquare The limit $\tau \to 0$ corresponds to the soft limit of the squared amplitude eikonal rules
- Need to include all possible real and virtual corrections to the amplitude squared

- Possible to combine different measurement function terms into unique configurations
- Perform integration over highly non-trivial region

Color structures decomposition

Full result splitting according to the number of soft emissions

 $S_{N^3LO} = S_{\rm RRR} + S_{\rm RRV} + S_{\rm RVV}$

	C_R^3	$C_R^2 n_f T_F$	$C_R^2 C_A$	$C_R (n_f T_F)^2$	$C_R C_F n_f T_F$	$C_R C_A n_f T_F$	$C_R C_A^2$
$S_{\rm RRR}$	+	+	+		+	?	?
$S_{\rm RRV}$			+	+	+	+	+
$S_{\rm RVV}$						+	+
S_{N^3LO}	+	+	+	+	+	+	+
Poles	yes	yes	yes	yes	yes	?	?

All poles in $S^{(3)}$ can be fixed from RGE and NNLO result with known anomalous dimensions.

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	000000	000

Relative complexity of ingredients

- For each soft emission we have one Heaviside θ-function in the measurement function that complicates the integration.
- Most complicated one-loop sub-integrals in the RRV case make direct integration impossible.
- Most complicated denominators in RRR case make direct integration impossible.
- Unregulated divergencies in the RRR case.

Single-real corrections

Introduc

Two-loop corrections $r_S^{(2)}$ to single gluon emission soft current are known exactly in ε . [Duhr, Gehrmann'13]

Two contributions from different hemisphere emissions need to be integrated, $S_q^{(3)} = s_{2,0} + s_{1,1} + s_{0,2}$

$$s_{l,m} = \int \frac{\mathsf{d}^d k}{(2\pi)^{d-1}} \delta^+ \left(k^2\right) \left[\delta(\tau - k \cdot n)\theta(k \cdot \bar{n} - k \cdot n) + \delta(\tau - k \cdot \bar{n})\theta(k \cdot n - k \cdot \bar{n})\right] w_{l,m}(k)$$

Double-real corrections

Introduction

- Results for one-loop soft current are known. [Zhu'20][Czakon et al.'22]
- RRV result for *gg* final state is known.
- Recalculation including $q\bar{q}$ final state.

Zhu'20][Czakon et al.'22] [Chen,Feng,Jia,Liu'22] [Baranowski et al.'24]

Conclusion

We need to integrate squared amplitude in the soft limit with constraints from δ and θ functions.
Only two different configurations nn and nn contribute.

10/27 2024-05-11 Chen-Yu Wang: Zero-jettiness soft function at N3LO in QCD

Interalization	D)///	DDV/	DDD	Construction
Introduction	R V V	RRV .	RRR	Conclusion
000000	0	0000000	0000000	000

11/27 2024-05-11 Chen-Yu Wang: Zero-jettiness soft function at N3LO in QCD

Introduction	RVV	RRV	RRR	Conclusion
000000	o	○●○○○○○○	0000000	000
	-			

• Amplitude: generate from scratch
$$S = \sum_{i} C_{i}I_{i}$$
.

• IBP reduction:
$$\int \mathrm{d}^d k \frac{\partial}{\partial k_\mu} \left[p_\mu \frac{1}{\prod_i D_i} \right] = 0.$$

 $\hfill Reverse unitarity: transform <math display="inline">\delta$ functions to denominators

[Chetyrkin, Tkachov'81]

[Anastasiou,Melnikov'02]

$$\delta(p^2-m^2) = \frac{1}{2\pi} \left[\frac{i}{p^2-m^2+i\varepsilon} - \frac{i}{p^2-m^2-i\varepsilon} \right]. \label{eq:delta_prod}$$

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	0000000	000

Amplitude Modified reverse unitarity IBP reduction MI evaluation

• Amplitude: generate from scratch
$$S = \sum_{i} C_{i}I_{i}$$
.

• IBP reduction:
$$\int \mathrm{d}^d k \frac{\partial}{\partial k_\mu} \left[p_\mu \frac{1}{\prod_i D_i} \right] = 0.$$

 $\hfill Reverse unitarity: transform <math display="inline">\delta$ functions to denominators

[Chetyrkin, Tkachov'81]

[Anastasiou,Melnikov'02]

$$\delta(p^2-m^2)=\frac{1}{2\pi}\left[\frac{i}{p^2-m^2+i\varepsilon}-\frac{i}{p^2-m^2-i\varepsilon}\right].$$

• How to deal with θ functions? \Longrightarrow **Modified reverse unitarity**

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	0000000	000

• Amplitude: generate from scratch
$$S = \sum_{i} C_{i}I_{i}$$
.

• IBP reduction:
$$\int \mathrm{d}^d k \frac{\partial}{\partial k_\mu} \left[p_\mu \frac{1}{\prod_i D_i} \right] = 0.$$

 $\hfill Reverse unitarity: transform <math display="inline">\delta$ functions to denominators

[Chetyrkin, Tkachov'81]

[Anastasiou,Melnikov'02]

$$\delta(p^2-m^2)=\frac{1}{2\pi}\left[\frac{i}{p^2-m^2+i\varepsilon}-\frac{i}{p^2-m^2-i\varepsilon}\right].$$

• How to deal with θ functions? \Longrightarrow **Modified reverse unitarity**

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	000000	000

Amplitude Modified reverse unitarity HBP reduction MI evaluation

• Amplitude: generate from scratch
$$S = \sum_{i} C_{i}I_{i}$$
.

• IBP reduction:
$$\int \mathrm{d}^d k \frac{\partial}{\partial k_\mu} \left[p_\mu \frac{1}{\prod_i D_i} \right] = 0.$$

 $\hfill Reverse unitarity: transform <math display="inline">\delta$ functions to denominators

[Chetyrkin, Tkachov'81]

[Anastasiou,Melnikov'02]

$$\delta(p^2-m^2)=\frac{1}{2\pi}\left[\frac{i}{p^2-m^2+i\varepsilon}-\frac{i}{p^2-m^2-i\varepsilon}\right].$$

• How to deal with θ functions? \Longrightarrow Modified reverse unitarity

• Master integral evaluation: $S = \sum_{i} C'_{i} I'_{i}$.

What if direct integration is impossible? \implies Solve differential equations w.r.t. auxiliary parameters

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	0000000	000

IBP identities can be constructed for properly regularized integrals:

$$\int \mathrm{d}^d k_i \, \mathrm{d}^d l \, \frac{\partial}{\partial k_{1\mu}} \left[v_\mu f(k_i,l) \theta_1(\ldots) \theta_2(\ldots) \right] = 0, \qquad \frac{\partial}{\partial \alpha_1} \theta(\alpha_1 - \beta_1) = \delta(\alpha_1 - \beta_1),$$

which generates two kinds of contributions:

$$\int \mathrm{d}^d k_i \, \mathrm{d}^d l \, \left\{ \frac{\partial}{\partial k_{1\mu}} \left[v_\mu f(k_i,l) \right] \theta_1 \theta_2 + f'(k_i,l) \delta_1 \theta_2 \right\} = 0$$

• The **homogenous** term corresponds to the normal IBP identites without θ functions.

• The inhomogenous term introduces new families and requires partial fraction decomposition.

• Auxiliary families with δ functions in place of θ functions are required.

Introduction RVV	RRV	RRR	Conclusion
000000 0	∞0●00000	0000000	000

$$\frac{\partial}{\partial k_{1\mu}}\left[v_{\mu}f(k_{i},l)\right]\theta_{1}\theta_{2}+f'(k_{i},l)\delta_{1}\theta_{2}=0$$

•
$$f_i = \theta$$
 or δ :

 $\begin{array}{l} nn \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \beta_2 \right) f_1(\alpha_1 - \beta_1) f_2(\alpha_2 - \beta_2) \\ n\overline{n} \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \alpha_2 \right) f_1(\alpha_1 - \beta_1) f_2(\beta_2 - \alpha_2) \end{array}$

• Starting from the amplitude with measure $\theta\theta$,

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	0000000	000

$$\frac{\partial}{\partial k_{1\mu}}\left[v_{\mu}f(k_{i},l)\right]\theta_{1}\theta_{2}+f'(k_{i},l)\delta_{1}\theta_{2}=0$$

•
$$f_i = \theta$$
 or δ :

 $\begin{array}{l} nn \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \beta_2 \right) f_1(\alpha_1 - \beta_1) f_2(\alpha_2 - \beta_2) \\ n\overline{n} \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \alpha_2 \right) f_1(\alpha_1 - \beta_1) f_2(\beta_2 - \alpha_2) \end{array}$

- Starting from the amplitude with measure $\theta\theta$,
 - **IBP** identities connect measures with fewer θ functions.

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	000000	000

$$\frac{\partial}{\partial k_{1\mu}}\left[v_{\mu}f(k_{i},l)\right]\theta_{1}\theta_{2}+f'(k_{i},l)\delta_{1}\theta_{2}=0$$

•
$$f_i = \theta$$
 or δ :

 $\begin{array}{l} nn \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \beta_2 \right) f_1(\alpha_1 - \beta_1) f_2(\alpha_2 - \beta_2) \\ n\overline{n} \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \alpha_2 \right) f_1(\alpha_1 - \beta_1) f_2(\beta_2 - \alpha_2) \end{array}$

- Starting from the amplitude with measure $\theta\theta$,
 - **IBP** identities connect measures with fewer θ functions.
 - symmetry relations connect measures with different permutations.

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	0000000	000

$$\frac{\partial}{\partial k_{1\mu}}\left[v_{\mu}f(k_{i},l)\right]\theta_{1}\theta_{2}+f'(k_{i},l)\delta_{1}\theta_{2}=0$$

•
$$f_i = \theta$$
 or δ :

 $\begin{array}{l} nn \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \beta_2 \right) f_1(\alpha_1 - \beta_1) f_2(\alpha_2 - \beta_2) \\ n\overline{n} \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \alpha_2 \right) f_1(\alpha_1 - \beta_1) f_2(\beta_2 - \alpha_2) \end{array}$

- Starting from the amplitude with measure $\theta\theta$,
 - **IBP** identities connect measures with fewer θ functions.
 - symmetry relations connect measures with different permutations.
- More symmetry relations between configurations.

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	0000000	000

• Generate the IBP system manually.

$$\frac{\partial}{\partial k_{1\mu}}\left[v_{\mu}f(k_{i},l)\right]\theta_{1}\theta_{2}+f'(k_{i},l)\delta_{1}\theta_{2}=0$$

•
$$f_i = \theta$$
 or δ :

 $\begin{array}{l} nn \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \beta_2 \right) f_1(\alpha_1 - \beta_1) f_2(\alpha_2 - \beta_2) \\ n\overline{n} \, \operatorname{configuration:} \, \delta \left(\tau - \beta_1 - \alpha_2 \right) f_1(\alpha_1 - \beta_1) f_2(\beta_2 - \alpha_2) \end{array}$

- Starting from the amplitude with measure $\theta\theta$,
 - IBP identities connect measures with fewer θ functions.
 - symmetry relations connect measures with different permutations.
- More symmetry relations between configurations.

Solve the system with Kira and FireFly (reduce_user_defined_system). [Klappert et al.'21]

Introduction	RVV	RRV	RRR	Conclusion
000000	o	000●0000	0000000	000

RRV: Master integrals calculation

• Number of MIs after IBP reduction of both configurations:

 $\begin{array}{cccc} \delta\delta & \delta\theta + \theta\delta & \theta\theta \\ 8 & 36 & 15 \end{array}$

• Direct integration is possible, except pentagons and boxes with $a_3 = 0$.

Differential equation in auxiliary parameters for most complicated integrals:

$$\partial_z J(\varepsilon,z) = M(\varepsilon,z) J(\varepsilon,z), \qquad I_i(\varepsilon) = \int \mathrm{d} z \, J_i(\varepsilon,z).$$

Introduction RVV	RRV	RRR	Conclusion
000000 0	0000●000	0000000	000

RRV: Master integrals from differential equations

• For $\delta\delta$ integrals, we introduce auxiliary paremeter $z = 2k_1 \cdot k_2$:

$$I_{\delta\delta} = \int \mathrm{d}(k_1\cdot k_2) f(k_1\cdot k_2) = \int_0^1 \mathrm{d}z\, J(z).$$

• For integrals involving θ functions, we introduce variable z_i for each θ function through its integral representation:

$$\theta(b-a) = \int_0^1 \mathrm{d}z \; b \delta(zb-a)$$

and the master integrals can be obtained through

$$I_{\delta\theta} = \int_0^1 {\rm d} z \, J(z), \quad I_{\theta\theta} = \int_0^1 {\rm d} z_1 \int_0^1 {\rm d} z_2 \, J(z_1,z_2).$$

Introduction	RVV	RRV	RRR	Conclusion
000000	o	00000●00	0000000	000

 a_2

 a_3

 a_{Λ}

 k_1

 k_2

 a_1

 a_{5}

RRV: Master integrals from differential equations

- For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix factorizes completely: $M(\varepsilon, z) \rightarrow \varepsilon A(z)$. [Henn'13]
- Straightforward solution for integrals in canonical basis in terms of GPLs
- Simpler boundary conditions fixing due to known general form of expansion near singular points

$$g(z)=z^{a_1+b_1\varepsilon}\left(c_1+\mathcal{O}(z)\right)+z^{a_2+b_2\varepsilon}\left(c_2+\mathcal{O}(z)\right)+\dots$$

Construction of subtraction terms to remove endpoint singularities in final integration

$$\begin{split} I = \int_0^1 \mathrm{d}z \; J(z) &= \int_0^1 \underbrace{\left[J(z) - z^{a_i + b_i \varepsilon} j_0(z) - (1 - z)^{a_k + b_k \varepsilon} j_1(z)\right]}_{\varepsilon - \mathrm{expanded}} \mathrm{d}z \\ &+ \int_0^1 \underbrace{\left(z^{a_i + b_i \varepsilon} j_0(z) - (1 - z)^{a_k + b_k \varepsilon} j_1(z)\right)}_{\varepsilon - \mathrm{exact}} \mathrm{d}z \end{split}$$

Introduction	RVV	RRV	RRR	Conclusion
000000	0	00000000	000000	000

RRV: Results

- Results for separate configurations contain $Li_4(1/2)$, but sum of two configurations has ζ_n only with maximal transcendental weight 6
- \blacksquare From N^3LO RRV + N^2LO result its possible extract large n_f contribution to the renormalized soft function

Non-logarithmic part of the Laplace space result

$$\tilde{S}_{\rm nl}^{(3)} = C_R \left(n_f T_F \right)^2 \left[\frac{265408}{6561} - \frac{400}{243} \pi^2 - \frac{51904}{243} \zeta_3 + \frac{328}{1215} \pi^4 + \mathcal{O}\left(\frac{1}{n_f}\right) \right]$$

Inter deather	D) () (BDV/	BBB	Constant
Introduction	K V V	RRV	RKK	Conclusion
000000	0	0000000	000000	000

Triple real corrections

Recalculated input for eikonal factor with partial fractioning and topology mapping:

• $ggg = ggg + gc\overline{c}$, coincides with known expression in physical gauge [Catani, Colferai, Torrini'19]

 $\begin{array}{ll} nnn \ \text{configuration} & nn\overline{n} \ \text{configuration} \\ \delta\left(\tau - \beta_1 - \beta_2 - \beta_3\right) \theta(\alpha_1 - \beta_1) \theta(\alpha_2 - \beta_2) \theta(\alpha_3 - \beta_3) & \delta\left(\tau - \beta_1 - \beta_2 - \alpha_3\right) \theta(\alpha_1 - \beta_1) \theta(\alpha_2 - \beta_2) \theta(\beta_3 - \alpha_3) \\ \end{array}$

• Same hemisphere result for *ggg* final state is known.

[Baranowski et al. '22]

Introduction 000000	RVV	RRV 00000000	RRR •000000	Conclusion
000000	0	00000000	000000	000

Introduction	RVV	RRV	RRR	Conclusion
000000	o	0000000	○●○○○○○	000

19/27 2024-05-11 Chen-Yu Wang: Zero-jettiness soft function at N3LO in QCD

• IBP reduction: unregulated integrals in the IBP system \Rightarrow wrong reduction

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	000000	000

19/27 2024-05-11 Chen-Yu Wang: Zero-jettiness soft function at N3LO in QCD

- IBP reduction: unregulated integrals in the IBP system \Rightarrow wrong reduction
 - Additional analytic regulator $\left(\prod_{i=1}^{3} \min\{\alpha_{i}, \beta_{i}\}\right)^{\nu}$ is required.
 - Can we get rid of it?

Introduction	RVV	RRV	RRR	Conclusion
000000	0	0000000	000000	000

• IBP reduction: unregulated integrals in the IBP system \Rightarrow wrong reduction

- Additional analytic regulator $\left(\prod_{i=1}^{3} \min\{\alpha_{i}, \beta_{i}\}\right)^{\nu}$ is required.
- Can we get rid of it?
- Master integral evaluation: complicated denominator

$$\frac{1}{(k_1+k_2+k_3)^2} \sim \frac{1}{2k_1\cdot k_2 + 2k_2\cdot k_3 + 2k_3\cdot k_1}$$

 \Rightarrow add a mass-like auxiliary parameter m^2 and evaluate with DE

$$\frac{1}{(k_1+k_2+k_3)^2+m^2}$$

Introduction RVV	RRV	RRR	Conclusion
000000 0	0000000	0●00000	000

• Not all integrals appearing during IBP reduction are regulated dimensionally.

$$\begin{split} J &= \int \frac{\mathrm{d}\Phi_3 \delta(\tau - \beta_{123}) \theta(\alpha_1 - \beta_1) \delta(\alpha_2 - \beta_2) \theta(\alpha_3 - \beta_3)}{(k_1 \cdot k_3)(\alpha_1 + \alpha_2) \alpha_3 \beta_1} \\ &\propto \int \left(\prod_{i=1}^3 \mathrm{d}\Omega_i^{d-2}\right) \mathrm{d}\xi_1 \mathrm{d}\xi_3 \mathrm{d}\beta_1 \mathrm{d}\beta_2 \mathrm{d}\beta_3 \left(\frac{\beta_1^2 \beta_3^2}{\xi_1 \xi_3}\right)^{-\varepsilon} \beta_2^{-2\varepsilon} \frac{\delta(1 - \beta_{123})}{(\xi_1 + \xi_3 + 2\sqrt{\xi_1 \xi_3} \cos \theta_{13})(\beta_1 + \beta_2 \xi_1) \beta_3 \beta_1} \end{split}$$

where $\xi_i=\beta_i/\alpha_i.$ In the following region

 $\xi_1 \sim \xi_3 \sim \beta_1 \sim \lambda$

we have

$$J \sim \int \left(\prod_{i=1}^3 \mathrm{d}\Omega_i^{d-2}\right) \mathrm{d}\xi_1 \mathrm{d}\xi_3 \mathrm{d}\beta_1 \mathrm{d}\beta_2 \mathrm{d}\beta_3 \delta(1-\xi_1-\xi_3-\beta_1) \int \frac{\mathrm{d}\lambda}{\lambda} \left(\frac{\lambda^2}{\lambda\lambda}\right)^{-\varepsilon} \times \cdots$$

Integration over λ diverges.

Introduction	RVV	RRV	RRR	Conclusion
000000	o	0000000	00●0000	000

20/27 2024-05-11 Chen-Yu Wang: Zero-jettiness soft function at N3LO in QCD

• Not all integrals appearing during IBP reduction are regulated dimensionally.

$$\begin{split} J &= \int \frac{\mathrm{d}\Phi_{3}\delta(\tau - \beta_{123})\theta(\alpha_{1} - \beta_{1})\delta(\alpha_{2} - \beta_{2})\theta(\alpha_{3} - \beta_{3})}{(k_{1} \cdot k_{3})(\alpha_{1} + \alpha_{2})\alpha_{3}\beta_{1}} (\beta_{1}\beta_{2}\beta_{3})^{\nu} \\ &\propto \int \left(\prod_{i=1}^{3}\mathrm{d}\Omega_{i}^{d-2}\right)\mathrm{d}\xi_{1}\mathrm{d}\xi_{3}\mathrm{d}\beta_{1}\mathrm{d}\beta_{2}\mathrm{d}\beta_{3} \left(\frac{\beta_{1}^{2}\beta_{3}^{2}}{\xi_{1}\xi_{3}}\right)^{-\varepsilon}\beta_{2}^{-2\varepsilon}\frac{\delta(1 - \beta_{123})(\beta_{1}\beta_{2}\beta_{3})^{\nu}}{(\xi_{1} + \xi_{3} + 2\sqrt{\xi_{1}\xi_{3}}\cos\theta_{13})(\beta_{1} + \beta_{2}\xi_{1})\beta_{3}\beta_{1}} \end{split}$$

where $\xi_i=\beta_i/\alpha_i.$ In the following region

 $\xi_1 \sim \xi_3 \sim \beta_1 \sim \lambda$

we have

$$J \sim \int \left(\prod_{i=1}^{3} \mathrm{d}\Omega_{i}^{d-2}\right) \mathrm{d}\xi_{1} \mathrm{d}\xi_{3} \mathrm{d}\beta_{1} \mathrm{d}\beta_{2} \mathrm{d}\beta_{3} \delta(1-\xi_{1}-\xi_{3}-\beta_{1}) \int \frac{\mathrm{d}\lambda}{\lambda} \left(\frac{\lambda^{2}}{\lambda\lambda}\right)^{-\varepsilon} \lambda^{\nu} \times \cdots$$

Integration over λ regulated by ν .

Introduction	RVV	RRV	RRR	Conclusion
000000	o	00000000	00●0000	000

20/27 2024-05-11 Chen-Yu Wang: Zero-jettiness soft function at N3LO in QCD

- Requires 3 real emissions to produce non-vanishing contribution.
- Additional analytic regulator to the integration measure $d\Phi_3 \left(\prod_{i=1}^3 \min\{\alpha_i, \beta_i\}\right)^{r}$ is required.
- IBP identities need to be modified:

$$\frac{\partial}{\partial\beta_1}\beta_1^\nu = \beta_1^\nu \frac{\nu}{\beta_1}.$$

Similar to the modified reverse unitarity \Longrightarrow auxiliary families & partial fraction decomposition.

- IBP reduction with additional regulator possible but more complicated, especially for auxiliary integrals $J(m^2)$.
 - reduction time, file size, basis choice, ...
 - Works for nnn configuration but too expensive for $nn\overline{n}$ configuration.
 - Can we get rid of the regulator while obtaining a correct IBP reduction?

Conclusion
Conclusion
000

- Requires 3 real emissions to produce non-vanishing contribution.
- Additional analytic regulator to the integration measure $d\Phi_3 \left(\prod_{i=1}^3 \min\{\alpha_i, \beta_i\}\right)^{\nu}$ is required.
- IBP identities need to be modified:

$$\frac{\partial}{\partial\beta_1}\beta_1^\nu=\beta_1^\nu\frac{\nu}{\beta_1}.$$

Similar to the modified reverse unitarity \Longrightarrow auxiliary families & partial fraction decomposition.

- Observation: unregularized integrals only appear in the IBP system not in the amplitude.
- Filter the regulated IBP system:
 - Generate IBP relations with the analytic regulator.
 - Filter away all unregulated integrals in the IBP system. \Leftarrow requires proper power counting
 - Set ν to 0.

• Correct and fast reduction.

Introduction	RVV	RRV	RRR	Conclusion
000000	o	0000000	000●000	000

Evaluation of $1/k_{123}^2$ integrals

• The problematic denominator $1/k_{123}^2$

$$\frac{1}{(k_1+k_2+k_3)^2} \sim \frac{1}{2k_1 \cdot k_2 + 2k_2 \cdot k_3 + 2k_3 \cdot k_1}$$

involves 3 dot products \Longrightarrow add a mass-like auxiliary parameter m^2 and take the limit $m^2 \to \infty$

$$\partial_{m^2}J(\varepsilon,m^2) = M(\varepsilon,m^2)J(\varepsilon,m^2), \qquad I_i(\varepsilon) = \lim_{m^2 \to 0} J_i(\varepsilon,m^2) = \lim_{m^2 \to 0} \int \mathrm{d}\Phi \, \frac{1}{k_{123}^2 + m^2} \frac{\cdots}{\cdots}.$$

• Solve the differential equations numerically from $m^2 \to \infty$ to $m^2 \to 0$ [Liu et al.'18][Chen et al.'22]

• Reconstruct analytical expression from numerical data.

Introduction	RVV	RRV	RRR	Conclusion
000000	o	00000000	0000●00	000

Evaluation of $1/k_{123}^2$ integrals

 $J = \int \mathrm{d} \Phi^{nnn}_{\delta\theta\theta} \; \frac{1}{(k_{123}^2 + m^2)(k_2 \cdot \overline{n})} \label{eq:J}$

System size:

- $\blacksquare \sim 150$ integrals for nnn configuration.
- $\blacksquare \sim 650$ integrals for $nn\overline{n}$ configuration.
- Boundary conditions at $m^2 \to \infty$ involves several regions as the Heaviside functions allow α_i to be large:

$$\left.J\right|_{m^2 \to \infty} = \begin{cases} (m^2)^0 & \text{ with } \alpha_1, \alpha_2, \alpha_3 \ll m^2 \\ (m^2)^{-\varepsilon} & \text{ with } \alpha_1, \alpha_i \ll m^2, \text{ while } \alpha_j \sim m^2 \\ (m^2)^{-2\varepsilon} & \text{ with } \alpha_1 \ll m^2, \text{ while } \alpha_2, \alpha_3 \sim m^2 \end{cases}$$

• The problematic denominator simplifies at the boundary:

$$k_{123}^2 + m^2 \sim \begin{cases} m^2 & (m^2)^0 \\ \alpha_j(\beta_1 + \beta_i) + m^2 & (m^2)^{-\varepsilon} \\ (\alpha_2 + \alpha_3)\beta_1 + 2k_2 \cdot k_3 + m^2 & (m^2)^{-2\varepsilon} \end{cases}$$

RVV	RRV	RRR	Conclusion
o	00000000	00000●0	000

Evaluation of $1/k_{123}^2$ integrals

 m^2 plane

1.0

0.5

-0.5

-1.0

-1.0

Introductio

-0.5

- Analytic continuate to the neighborhood of physical point $m^2 = 0$.
- \bullet For $m^2 \geq 0, \; J_i(\varepsilon,m^2)$ is real \Rightarrow consistency check to the solution.
- Matching at the **physical point** $m^2 = 0$:

$$J = \sum_{i,j,k} c_{ijk}(\varepsilon) (m^2)^{i+j\varepsilon} \ln^k m^2$$

- $\label{eq:integral} \bullet \ I \ {\rm corresponds} \ {\rm to} \ \lim_{m^2 \to 0} J(\varepsilon,m^2) = c_{000}(\varepsilon).$
- Finally we reconstruct the analytical expression.

	0	00000000	0000000	000
1	RVV	BRV	RRR	Conclusion
	t			

0.5

1.0

Direct integration of master integrals and boundary conditions

- We have calculated ~ 130 integrals without $1/k_{123}^2$ denominator and ~ 100 boundary conditions by direct integration with HyperInt [Panzer'15]
- Summary of used techniques
 - \bullet Change variables to satisfy all constraints from δ and θ functions
 - \bullet Perform as many integrations as possible in terms of $_2F_1$ and F_1 functions with known argument transforms
 - Do remaining integrations in terms of ${}_{p}F_{q}$ functions if possible
 - For final integral representation with minimal number of integrations and minimal set of divergencies we construct subtraction terms
 - Integrand with all divergencies subtracted is expanded in ε and integrated term by term with HyperInt
 - Subtraction terms are integrated in the same way

Introduction	RVV	RRV	RRR	Conclusion
000000	o	00000000	000000●	000

Current status

Full result splitting according to the number of soft emissions

 $S_{N^3LO} = S_{\rm RRR} + S_{\rm RRV} + S_{\rm RVV}$

_	C_R^3	$C_R^2 n_f T_F$	$C_R^2 C_A$	$C_R (n_f T_F)^2$	$C_R C_F n_f T_F$	$C_R C_A n_f T_F$	$C_R C_A^2$
S_{RRR}	+	+	+		+	?	?
$S_{\rm RRV}$			+	+	+	+	+
$S_{\rm RVV}$						+	+
S_{N^3LO}	+	+	+	+	+	+	+
Poles	yes	yes	yes	yes	yes	?	?

All poles in $S^{\left(3\right)}$ can be fixed from RGE and NNLO result with known anomalous dimensions.

Introduction RVV	RRV	RRR	Conclusion
000000 0	00000000	0000000	●○○

Remaining steps to complete calculation

Numerical checks

- Extensive numerical checks of separate amplitude terms and/or master integrals are needed for RRR integrals with 1/k²₁₂₃.
- Very complicated due to high degree of divergencies for both MB and sector decomposition approaches.

• More orders in ε

- Once agreement for poles is found we need to produce higher ε -order expansions from DE.
- Requires deeper expansions for boundary conditions.

More digits for reconstructing analytical expression

- When all needed ε -expansions are known we need to solve DE numerically to high precision to reconstruct analytical result.
- Same hemisphere ggg amplitude requires ~ 1800 digits to discover the expression involving GPLs with sixth root of unity up to weight 6.
- Full expression is expected to be simpler, i.e. less digits required for reconstruction.

Introduction	RVV	RRV	RRR	Conclusion
000000	o	0000000	0000000	○●○

Conclusion

- N3LO QCD corrections are crucial to the percent level phenomenology at LHC and HL-LHC.
- We are ready to produce final numbers for renormalized N³LO zero-jettiness soft function.
- Extensive numerical checks of the most complicated triple-real emission contributions is underway.
- Efficient reduction techniques for integrals with Heaviside θ functions applicable for phase-space integrals with loops and additional regulators.
- Powerful method for evaluating complicated RRR integrals by solving differential equations in auxiliary parameter numerically with high precision and calculated all needed boundary conditions

Introduction	RVV	RRV	RRR	Conclusion
000000	o	00000000	0000000	○○●
000000	0	0000000	0000000	000

Analytic regulator

 Although the soft function itself is regularized dimensionally, we found that an additional regulator is required to obtain a correct result

$$\mathrm{d} \Phi^{nnn}_{f_1f_2f_3} \to \mathrm{d} \Phi^{nnn}_{f_1f_2f_3}(k_1\cdot n)^\nu (k_2\cdot n)^\nu (k_3\cdot n)^\nu.$$

The amplitude reduces to

$$S_{ggg}^{nnn} = \sum_{\alpha} c_{\alpha}(\nu) I_{\alpha}^{\nu} + \nu \sum_{\alpha} \tilde{c}_{\alpha}(\nu) \overline{I}_{\alpha}^{\nu},$$

where two of the $\overline{I}_{\alpha}^{\nu}$ are $1/\nu$ -divergent.

- For integrals without $1/k_{123}^2$ denominator, we can proceed as before and obtain analytical results.
- For integrals with $1/k_{123}^2$ denominator, we now have two limits to take:

$$I(\epsilon) = \lim_{\nu \to 0} \lim_{m \to 0} J(\epsilon, \nu, m).$$

We find that these two limits do commute, thus we can set $\nu=0$ beforhand and solve the equation. $_{\rm Backup}$